Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Ppld Is A De-N-Acetylase Of The Cell Wall Linkage Unit Of Streptococcal Rhamnopolysaccharides, Jeffrey S. Rush, Prakash Parajuli, Alessandro Ruda, Jian Li, Amol Arunrao Pohane, Svetlana Zamakhaeva, Mohammad M. Rahman, Jennifer C. Chang, Artemis Gogos, Cameron W. Kenner, Gérard Lambeau, Michael J. Federle, Konstantin V. Korotkov, Göran Widmalm, Natalia Korotkova Feb 2022

Ppld Is A De-N-Acetylase Of The Cell Wall Linkage Unit Of Streptococcal Rhamnopolysaccharides, Jeffrey S. Rush, Prakash Parajuli, Alessandro Ruda, Jian Li, Amol Arunrao Pohane, Svetlana Zamakhaeva, Mohammad M. Rahman, Jennifer C. Chang, Artemis Gogos, Cameron W. Kenner, Gérard Lambeau, Michael J. Federle, Konstantin V. Korotkov, Göran Widmalm, Natalia Korotkova

Molecular and Cellular Biochemistry Faculty Publications

The cell wall of the human bacterial pathogen Group A Streptococcus (GAS) consists of peptidoglycan decorated with the Lancefield group A carbohydrate (GAC). GAC is a promising target for the development of GAS vaccines. In this study, employing chemical, compositional, and NMR methods, we show that GAC is attached to peptidoglycan via glucosamine 1-phosphate. This structural feature makes the GAC-peptidoglycan linkage highly sensitive to cleavage by nitrous acid and resistant to mild acid conditions. Using this characteristic of the GAS cell wall, we identify PplD as a protein required for deacetylation of linkage N-acetylglucosamine (GlcNAc). X-ray structural analysis indicates …


Detecting And Accounting For Multiple Sources Of Positional Variance In Peak List Registration Analysis And Spin System Grouping, Andrey Smelter, Eric C. Rouchka, Hunter N. B. Moseley Aug 2017

Detecting And Accounting For Multiple Sources Of Positional Variance In Peak List Registration Analysis And Spin System Grouping, Andrey Smelter, Eric C. Rouchka, Hunter N. B. Moseley

Molecular and Cellular Biochemistry Faculty Publications

Peak lists derived from nuclear magnetic resonance (NMR) spectra are commonly used as input data for a variety of computer assisted and automated analyses. These include automated protein resonance assignment and protein structure calculation software tools. Prior to these analyses, peak lists must be aligned to each other and sets of related peaks must be grouped based on common chemical shift dimensions. Even when programs can perform peak grouping, they require the user to provide uniform match tolerances or use default values. However, peak grouping is further complicated by multiple sources of variance in peak position limiting the effectiveness of …