Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

Selected Works

Soybean

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Regenerating Agricultural Landscapes With Perennial Groundcover For Intensive Crop Production, Kenneth J. Moore, Robert P. Anex, Amani E. Elobeid, Shuizhang Fei, Cornelia B. Flora, A. Susana Goggi, Keri L. Jacobs, Prashant Jha, Amy L. Kaleita, Douglas L. Karlen, David A. Laird, Andrew W. Lenssen, Thomas Lubberstedt, Marshall D. Mcdaniel, D. Raj Raman, Sharon L. Weyers Aug 2019

Regenerating Agricultural Landscapes With Perennial Groundcover For Intensive Crop Production, Kenneth J. Moore, Robert P. Anex, Amani E. Elobeid, Shuizhang Fei, Cornelia B. Flora, A. Susana Goggi, Keri L. Jacobs, Prashant Jha, Amy L. Kaleita, Douglas L. Karlen, David A. Laird, Andrew W. Lenssen, Thomas Lubberstedt, Marshall D. Mcdaniel, D. Raj Raman, Sharon L. Weyers

Douglas L Karlen

The Midwestern U.S. landscape is one of the most highly altered and intensively managed ecosystems in the country. The predominant crops grown are maize (Zea mays L.) and soybean [Glycine max (L.) Merr]. They are typically grown as monocrops in a simple yearly rotation or with multiple years of maize (2 to 3) followed by a single year of soybean. This system is highly productive because the crops and management systems have been well adapted to the regional growing conditions through substantial public and private investment. Furthermore, markets and supporting infrastructure are highly developed for both crops. As maize and …


Candidate Perennial Bioenergy Grasses Have A Higher Albedo Than Annual Row Crops, Jesse N. Miller, Andy Vanloocke, Nuria Gomez-Casanovas, Carl J. Bernacchi Jan 2017

Candidate Perennial Bioenergy Grasses Have A Higher Albedo Than Annual Row Crops, Jesse N. Miller, Andy Vanloocke, Nuria Gomez-Casanovas, Carl J. Bernacchi

Andy VanLoocke

The production of perennial cellulosic feedstocks for bioenergy presents the potential to diversify regional economies and the national energy supply, while also serving as climate ‘regulators’ due to a number of biogeochemical and biogeophysical differences relative to row crops. Numerous observational and model-based approaches have investigated biogeochemical trade-offs, such as increased carbon sequestration and increased water use, associated with growing cellulosic feedstocks. A less understood aspect is the biogeophysical changes associated with the difference in albedo (a), which could alter the local energy balance and cause local to regional cooling several times larger than that associated with offsetting carbon. Here, …