Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Plasma And Serum Proteins Bound To Nanoceria: Insights Into Pathways By Which Nanoceria May Exert Its Beneficial And Deleterious Effects In Vivo, D. Allan Butterfield, Binghui Wang, Peng Wu, Sarita S. Hardas, Jason M. Unrine, Eric A. Grulke, Jian Cai, Jon B. Klein, William M. Pierce, Robert A. Yokel, Rukhsana Sultana Jul 2020

Plasma And Serum Proteins Bound To Nanoceria: Insights Into Pathways By Which Nanoceria May Exert Its Beneficial And Deleterious Effects In Vivo, D. Allan Butterfield, Binghui Wang, Peng Wu, Sarita S. Hardas, Jason M. Unrine, Eric A. Grulke, Jian Cai, Jon B. Klein, William M. Pierce, Robert A. Yokel, Rukhsana Sultana

Chemistry Faculty Publications

Nanoceria (CeO2, cerium oxide nanoparticles) is proposed as a therapeutic for multiple disorders. In blood, nanoceria becomes protein-coated, changing its surface properties to yield a different presentation to cells. There is little information on the interaction of nanoceria with blood proteins. The current study is the first to report the proteomics identification of plasma and serum proteins adsorbed to nanoceria. The results identify a number of plasma and serum proteins interacting with nanoceria, proteins whose normal activities regulate numerous cell functions: antioxidant/detoxification, energy regulation, lipoproteins, signaling, complement, immune function, coagulation, iron homeostasis, proteolysis, inflammation, protein folding, protease inhibition, adhesion, protein/RNA …


Canvass: A Crowd-Sourced, Natural-Product Screening Library For Exploring Biological Space, Sara E. Kearney, Gergely ZahoráNszky-KőHalmi, Kyle R. Brimacombe, Mark J. Henderson, Caitlin Lynch, Tongan Zhao, Kanny K. Wan, Zina Itkin, Christopher Dillon, Min Shen, Dorian M. Cheff, Tobie D. Lee, Danielle Bougie, Ken Cheng, Nathan P. Coussens, Dorjbal Dorjsuren, Richard T. Eastman, Ruili Huang, Michael J. Iannotti, Surendra Karavadhi, Carleen Klumpp-Thomas, Jacob S. Roth, Srilatha Sakamuru, Wei Sun, Steven A. Titus, Adam Yasgar, Ya-Qin Zhang, Jinghua Zhao, Rodrigo B. Andrade, M. Kevin Brown, Robert B. Grossman Dec 2018

Canvass: A Crowd-Sourced, Natural-Product Screening Library For Exploring Biological Space, Sara E. Kearney, Gergely ZahoráNszky-KőHalmi, Kyle R. Brimacombe, Mark J. Henderson, Caitlin Lynch, Tongan Zhao, Kanny K. Wan, Zina Itkin, Christopher Dillon, Min Shen, Dorian M. Cheff, Tobie D. Lee, Danielle Bougie, Ken Cheng, Nathan P. Coussens, Dorjbal Dorjsuren, Richard T. Eastman, Ruili Huang, Michael J. Iannotti, Surendra Karavadhi, Carleen Klumpp-Thomas, Jacob S. Roth, Srilatha Sakamuru, Wei Sun, Steven A. Titus, Adam Yasgar, Ya-Qin Zhang, Jinghua Zhao, Rodrigo B. Andrade, M. Kevin Brown, Robert B. Grossman

Chemistry Faculty Publications

Natural products and their derivatives continue to be wellsprings of nascent therapeutic potential. However, many laboratories have limited resources for biological evaluation, leaving their previously isolated or synthesized compounds largely or completely untested. To address this issue, the Canvass library of natural products was assembled, in collaboration with academic and industry researchers, for quantitative high-throughput screening (qHTS) across a diverse set of cell-based and biochemical assays. Characterization of the library in terms of physicochemical properties, structural diversity, and similarity to compounds in publicly available libraries indicates that the Canvass library contains many structural elements in common with approved drugs. The …


Informing Efforts To Develop Nitroreductase For Amine Production, Anne-Frances Miller, Jonathan T. Park, Kyle L. Ferguson, Warintra Pitsawong, Andreas S. Bommarius Jan 2018

Informing Efforts To Develop Nitroreductase For Amine Production, Anne-Frances Miller, Jonathan T. Park, Kyle L. Ferguson, Warintra Pitsawong, Andreas S. Bommarius

Chemistry Faculty Publications

Nitroreductases (NRs) hold promise for converting nitroaromatics to aromatic amines. Nitroaromatic reduction rate increases with Hammett substituent constant for NRs from two different subgroups, confirming substrate identity as a key determinant of reactivity. Amine yields were low, but compounds yielding amines tend to have a large π system and electron withdrawing substituents. Therefore, we also assessed the prospects of varying the enzyme. Several different subgroups of NRs include members able to produce aromatic amines. Comparison of four NR subgroups shows that they provide contrasting substrate binding cavities with distinct constraints on substrate position relative to the flavin. The unique architecture …


Rat Brain Pro-Oxidant Effects Of Peripherally Administered 5 Nm Ceria 30 Days After Exposure, Sarita S. Hardas, Rukhsana Sultana, Govind Warrier, Mo Dan, Rebecca L. Florence, Peng Wu, Eric A. Grulke, Michael T. Tseng, Jason M. Unrine, Uschi M. Graham, Robert A. Yokel, D. Allan Butterfield Oct 2012

Rat Brain Pro-Oxidant Effects Of Peripherally Administered 5 Nm Ceria 30 Days After Exposure, Sarita S. Hardas, Rukhsana Sultana, Govind Warrier, Mo Dan, Rebecca L. Florence, Peng Wu, Eric A. Grulke, Michael T. Tseng, Jason M. Unrine, Uschi M. Graham, Robert A. Yokel, D. Allan Butterfield

Chemistry Faculty Publications

The objective of this study was to determine the residual pro-or anti-oxidant effects in rat brain 30 days after systemic administration of a 5 nm citrate-stabilized ceria dispersion. A ∼4% aqueous ceria dispersion was iv-infused (0 or 85 mg/kg) into rats which were terminated 30 days later. Ceria concentration, localization, and chemical speciation in the brain was assessed by inductively coupled plasma mass spectrometry (ICP-MS), light and electron microscopy (EM), and electron energy loss spectroscopy (EELS), respectively. Pro- or anti-oxidant effects were evaluated by measuring levels of protein carbonyls (PC), 3-nitrotyrosine (3NT), and protein-bound-4-hydroxy-2-trans-nonenal (HNE) in the hippocampus, cortex, and …