Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Neuroinflammation And Neurologic Deficits In Diabetes Linked To Brain Accumulation Of Amylin, Sarah Srodulski, Savita Sharma, Adam B. Bachstetter, Jennifer M. Brelsfoard, Conrado Pascual, Xinmin Simon Xie, Kathryn E. Saatman, Linda J. Van Eldik, Florin Despa Aug 2014

Neuroinflammation And Neurologic Deficits In Diabetes Linked To Brain Accumulation Of Amylin, Sarah Srodulski, Savita Sharma, Adam B. Bachstetter, Jennifer M. Brelsfoard, Conrado Pascual, Xinmin Simon Xie, Kathryn E. Saatman, Linda J. Van Eldik, Florin Despa

Pharmacology and Nutritional Sciences Faculty Publications

BACKGROUND: We recently found that brain tissue from patients with type-2 diabetes (T2D) and cognitive impairment contains deposits of amylin, an amyloidogenic hormone synthesized and co-secreted with insulin by pancreatic β-cells. Amylin deposition is promoted by chronic hypersecretion of amylin (hyperamylinemia), which is common in humans with obesity or pre-diabetic insulin resistance. Human amylin oligomerizes quickly when oversecreted, which is toxic, induces inflammation in pancreatic islets and contributes to the development of T2D. Here, we tested the hypothesis that accumulation of oligomerized amylin affects brain function.

METHODS: In contrast to amylin from humans, rodent amylin is neither amyloidogenic nor cytotoxic. …


Role Of Erk1, 2, And 5 In Dopamine Neuron Survival During Aging, Mayur S. Parmar, Juliann D. Jaumotte, Stephanie L. Wyrostek, Michael J. Zigmond, Jane E. Cavanaugh Mar 2014

Role Of Erk1, 2, And 5 In Dopamine Neuron Survival During Aging, Mayur S. Parmar, Juliann D. Jaumotte, Stephanie L. Wyrostek, Michael J. Zigmond, Jane E. Cavanaugh

HPD Articles

Extracellular signal-regulated kinases (ERKs) 1, 2, and 5 have been shown to play distinct roles in proliferation, differentiation, and neuronal viability. In this study, we examined ERK1, 2, and 5 expression and activation in the substantia nigra (SN), striatum (STR), and ventral tegmental area (VTA) during aging. An age-related decrease in phosphorylated ERK5 was observed in the SN and STR, whereas an increase in total ERK1 was observed in all 3 regions. In primary cultures of the SN and VTA, inhibition of ERK5 but not ERK1 and 2 decreased dopamine neuronal viability significantly. These data suggest that ERK5 is essential …