Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Pharmacology, Toxicology and Environmental Health

External Link

Selected Works

Celia A. Schiffer

Mutation

Publication Year

Articles 1 - 11 of 11

Full-Text Articles in Life Sciences

Decomposing The Energetic Impact Of Drug-Resistant Mutations: The Example Of Hiv-1 Protease-Drv Binding, Yufeng Cai, Celia Schiffer Oct 2012

Decomposing The Energetic Impact Of Drug-Resistant Mutations: The Example Of Hiv-1 Protease-Drv Binding, Yufeng Cai, Celia Schiffer

Celia A. Schiffer

HIV-1 protease is a major drug target for AIDS therapy. With the appearance of drug-resistant HIV-1 protease variants, understanding the mechanism of drug resistance becomes critical for rational drug design. Computational methods can provide more details about inhibitor-protease binding than crystallography and isothermal titration calorimetry. The latest FDA-approved HIV-1 protease inhibitor is Darunavir (DRV). Herein, each DRV atom is evaluated by free energy component analysis for its contribution to the binding affinity with wild-type protease and ACT, a drug-resistant variant. This information can contribute to the rational design of new HIV-1 protease inhibitors.


Hydrophobic Core Flexibility Modulates Enzyme Activity In Hiv-1 Protease, Seema Mittal, Yufeng Cai, Madhavi Nalam, Daniel Bolon, Celia Schiffer Oct 2012

Hydrophobic Core Flexibility Modulates Enzyme Activity In Hiv-1 Protease, Seema Mittal, Yufeng Cai, Madhavi Nalam, Daniel Bolon, Celia Schiffer

Celia A. Schiffer

Human immunodeficiency virus Type-1 (HIV-1) protease is crucial for viral maturation and infectivity. Studies of protease dynamics suggest that the rearrangement of the hydrophobic core is essential for enzyme activity. Many mutations in the hydrophobic core are also associated with drug resistance and may modulate the core flexibility. To test the role of flexibility in protease activity, pairs of cysteines were introduced at the interfaces of flexible regions remote from the active site. Disulfide bond formation was confirmed by crystal structures and by alkylation of free cysteines and mass spectrometry. Oxidized and reduced crystal structures of these variants show the …


Evaluation Of The Substrate Envelope Hypothesis For Inhibitors Of Hiv-1 Protease, Sripriya Chellappan, Visvaldas Kairys, Miguel Fernandes, Celia Schiffer, Michael Gilson Nov 2011

Evaluation Of The Substrate Envelope Hypothesis For Inhibitors Of Hiv-1 Protease, Sripriya Chellappan, Visvaldas Kairys, Miguel Fernandes, Celia Schiffer, Michael Gilson

Celia A. Schiffer

Crystallographic data show that various substrates of HIV protease occupy a remarkably uniform region within the binding site; this region has been termed the substrate envelope. It has been suggested that an inhibitor that fits within the substrate envelope should tend to evade viral resistance because a protease mutation that reduces the affinity of the inhibitor will also tend to reduce the affinity of substrate, and will hence decrease the activity of the enzyme. Accordingly, inhibitors that fit the substrate envelope better should be less susceptible to clinically observed resistant mutations, since these must also allow substrates to bind. The …


Discovery Of Hiv-1 Protease Inhibitors With Picomolar Affinities Incorporating N-Aryl-Oxazolidinone-5-Carboxamides As Novel P2 Ligands, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Madhavi Nalam, Celia Schiffer, Tariq Rana Nov 2011

Discovery Of Hiv-1 Protease Inhibitors With Picomolar Affinities Incorporating N-Aryl-Oxazolidinone-5-Carboxamides As Novel P2 Ligands, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Madhavi Nalam, Celia Schiffer, Tariq Rana

Celia A. Schiffer

Here, we describe the design, synthesis, and biological evaluation of novel HIV-1 protease inhibitors incorporating N-phenyloxazolidinone-5-carboxamides into the (hydroxyethylamino)sulfonamide scaffold as P2 ligands. Series of inhibitors with variations at the P2 phenyloxazolidinone and the P2' phenylsulfonamide moieties were synthesized. Compounds with the (S)-enantiomer of substituted phenyloxazolidinones at P2 show highly potent inhibitory activities against HIV-1 protease. The inhibitors possessing 3-acetyl, 4-acetyl, and 3-trifluoromethyl groups at the phenyl ring of the oxazolidinone fragment are the most potent in each series, with K(i) values in the low picomolar (pM) range. The electron-donating groups 4-methoxy and 1,3-dioxolane are preferred at P2' phenyl ring, …


Association Of A Novel Human Immunodeficiency Virus Type 1 Protease Substrate Cleft Mutation, L23i, With Protease Inhibitor Therapy And In Vitro Drug Resistance, Elizabeth Johnston, Mark Winters, Soo-Yon Rhee, Thomas Merigan, Celia Schiffer, Robert Shafer Nov 2011

Association Of A Novel Human Immunodeficiency Virus Type 1 Protease Substrate Cleft Mutation, L23i, With Protease Inhibitor Therapy And In Vitro Drug Resistance, Elizabeth Johnston, Mark Winters, Soo-Yon Rhee, Thomas Merigan, Celia Schiffer, Robert Shafer

Celia A. Schiffer

We observed a previously uncharacterized mutation in the protease substrate cleft, L23I, in 31 of 4,303 persons undergoing human immunodeficiency virus type 1 genotypic resistance testing. In combination with V82I, L23I was associated with a sevenfold reduction in nelfinavir susceptibility and a decrease in replication capacity. In combination with other drug resistance mutations, L23I was associated with multidrug resistance and a compensatory increase in replication capacity.


Toward The Design Of Mutation-Resistant Enzyme Inhibitors: Further Evaluation Of The Substrate Envelope Hypothesis, Visvaldas Kairys, Michael Gilson, Viney Lather, Celia Schiffer, Miguel Fernandes Nov 2011

Toward The Design Of Mutation-Resistant Enzyme Inhibitors: Further Evaluation Of The Substrate Envelope Hypothesis, Visvaldas Kairys, Michael Gilson, Viney Lather, Celia Schiffer, Miguel Fernandes

Celia A. Schiffer

Previous studies have shown the usefulness of the substrate envelope concept in the analysis and prediction of drug resistance profiles for human immunodeficiency virus protease mutants. This study tests its applicability to several other therapeutic targets: Abl kinase, chitinase, thymidylate synthase, dihydrofolate reductase, and neuraminidase. For the targets where many (> or =6) mutation data are available to compute the average mutation sensitivity of inhibitors, the total volume of an inhibitor molecule that projects outside the substrate envelope V(out), is found to correlate with average mutation sensitivity. Analysis of a locally computed volume suggests that the same correlation would hold …


Pten Enters The Nucleus By Diffusion, Fenghua Liu, Stefan Wagner, Robert Campbell, Jeffrey Nickerson, Celia Schiffer, Alonzo Ross Nov 2011

Pten Enters The Nucleus By Diffusion, Fenghua Liu, Stefan Wagner, Robert Campbell, Jeffrey Nickerson, Celia Schiffer, Alonzo Ross

Celia A. Schiffer

Despite much evidence for phosphatidylinositol phosphate (PIP)-triggered signaling pathways in the nucleus, there is little understanding of how the levels and activities of these proteins are regulated. As a first step to elucidating this problem, we determined whether phosphatase and tensin homolog deleted on chromosome 10 (PTEN) enters the nucleus by passive diffusion or active transport. We expressed various PTEN fusion proteins in tsBN2, HeLa, LNCaP, and U87MG cells and determined that the largest PTEN fusion proteins showed little or no nuclear localization. Because diffusion through nuclear pores is limited to proteins of 60,000 Da or less, this suggests that …


Structural Stability Of Disulfide Mutants Of Basic Pancreatic Trypsin Inhibitor: A Molecular Dynamics Study, Celia Schiffer, Wilfred Van Gunsteren Nov 2011

Structural Stability Of Disulfide Mutants Of Basic Pancreatic Trypsin Inhibitor: A Molecular Dynamics Study, Celia Schiffer, Wilfred Van Gunsteren

Celia A. Schiffer

The structure and folding of basic pancreatic trypsin inhibitor (BPTI) has been studied extensively by experimental means. We report a computer simulation study of the structural stability of various disulfide mutants of BPTI, involving eight 250-psec molecular dynamics simulations of the proteins in water, with and without a phosphate counterion. The presence of the latter alters the relative stability of the single disulfide species [5-55] and [30-51]. This conclusion can explain results of mutational studies and the conservation of residues in homologues of BPTI, and suggests a possible role of ions in stabilizing one intermediate over another in unfolding or …


Structure Of A Phage Display-Derived Variant Of Human Growth Hormone Complexed To Two Copies Of The Extracellular Domain Of Its Receptor: Evidence For Strong Structural Coupling Between Receptor Binding Sites, Celia Schiffer, Mark Ultsch, Scott Walsh, William Somers, Abraham De Vos, Anthony Kossiakoff Nov 2011

Structure Of A Phage Display-Derived Variant Of Human Growth Hormone Complexed To Two Copies Of The Extracellular Domain Of Its Receptor: Evidence For Strong Structural Coupling Between Receptor Binding Sites, Celia Schiffer, Mark Ultsch, Scott Walsh, William Somers, Abraham De Vos, Anthony Kossiakoff

Celia A. Schiffer

The structure of the ternary complex between the phage display- optimized, high-affinity Site 1 variant of human growth hormone (hGH) and two copies of the extracellular domain (ECD) of the hGH receptor (hGHR) has been determined at 2.6 A resolution. There are widespread and significant structural differences compared to the wild-type ternary hGH hGHR complex. The hGH variant (hGH(v)) contains 15 Site 1 mutations and binds>10(2) tighter to the hGHR ECD (hGH(R1)) at Site 1. It is biologically active and specific to hGHR. The hGH(v) Site 1 interface is somewhat smaller and 20% more hydrophobic compared to the wild-type …


Prediction Of Homologous Protein Structures Based On Conformational Searches And Energetics, Celia Schiffer, James Caldwell, Peter Kollman, Robert Stroud Nov 2011

Prediction Of Homologous Protein Structures Based On Conformational Searches And Energetics, Celia Schiffer, James Caldwell, Peter Kollman, Robert Stroud

Celia A. Schiffer

A "knowledge-based" method of predicting the unknown structure of a protein from a homologous known structure using energetics to determine a sidechain conformation is proposed. The method consists of exchanging the residues in the known structure for the sequence of the unknown protein. Then a conformational search with molecular mechanics energy minimization is done on the exchanged residues. The lowest energy conformer is the one picked to be the predicted structure. In the structure of bovine trypsin, the importance of including a solvation energy term in the search is demonstrated for solvent accessible residues, while molecular mechanics alone is enough …


Discovery And Selection Of Tmc114, A Next Generation Hiv-1 Protease Inhibitor, Dominique Surleraux, Abdellah Tahri, Wim Verschueren, Geert Pille, Herman De Kock, Tim Jonckers, Anik Peeters, Sandra De Meyer, Hilde Azijn, Rudi Pauwels, Marie-Pierre De Bethune, Nancy King, Moses Prabu-Jeyabalan, Celia Schiffer, Piet Wigerinck Nov 2011

Discovery And Selection Of Tmc114, A Next Generation Hiv-1 Protease Inhibitor, Dominique Surleraux, Abdellah Tahri, Wim Verschueren, Geert Pille, Herman De Kock, Tim Jonckers, Anik Peeters, Sandra De Meyer, Hilde Azijn, Rudi Pauwels, Marie-Pierre De Bethune, Nancy King, Moses Prabu-Jeyabalan, Celia Schiffer, Piet Wigerinck

Celia A. Schiffer

The screening of known HIV-1 protease inhibitors against a panel of multi-drug-resistant viruses revealed the potent activity of TMC126 on drug-resistant mutants. In comparison to amprenavir, the improved affinity of TMC126 is largely the result of one extra hydrogen bond to the backbone of the protein in the P2 pocket. Modification of the substitution pattern on the phenylsulfonamide P2' substituent of TMC126 created an interesting SAR, with the close analogue TMC114 being found to have a similar antiviral activity against the mutant and the wild-type viruses. X-ray and thermodynamic studies on both wild-type and mutant enzymes showed an extremely high …