Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Oceanography and Atmospheric Sciences and Meteorology

2023

Euphotic zone

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Levels Of Autotrophy And Heterotrophy In Mesophotic Corals Near The End Photic Zone, Amy Carmignani, Veronica Z. Radice, Kathryn M. Mcmahon, Alex I. Holman, Karen Miller, Kliti Grice, Zoe Richards Jan 2023

Levels Of Autotrophy And Heterotrophy In Mesophotic Corals Near The End Photic Zone, Amy Carmignani, Veronica Z. Radice, Kathryn M. Mcmahon, Alex I. Holman, Karen Miller, Kliti Grice, Zoe Richards

Biological Sciences Faculty Publications

Mesophotic corals live at ~30-150 m depth and can sustain metabolic processes under light-limited conditions by enhancing autotrophy through specialized photoadaptations or increasing heterotrophic nutrient acquisition. These acclimatory processes are often species-specific, however mesophotic ecosystems are largely unexplored and acclimation limits for most species are unknown. This study examined mesophotic coral ecosystems using a remotely operated vehicle (Ashmore Reef, Western Australia at 40–75m depth) to investigate the trophic ecology of five species of scleractinian coral (from genera Leptoseris, Pachyseris, and Craterastrea) using stable isotope analyses (δ13C and δ15N) of host and symbiont tissues …


Nitrite Cycling In The Primary Nitrite Maxima Of The Eastern Tropical North Pacific, Nicole M. Travis, Colette L. Kelly, Margaret R. Mulholland, Karen L. Casciotti Jan 2023

Nitrite Cycling In The Primary Nitrite Maxima Of The Eastern Tropical North Pacific, Nicole M. Travis, Colette L. Kelly, Margaret R. Mulholland, Karen L. Casciotti

OES Faculty Publications

The primary nitrite maximum (PNM) is a ubiquitous feature of the upper ocean, where nitrite accumulates in a sharp peak at the base of the euphotic zone. This feature is situated where many chemical and hydrographic properties have strong gradients and the activities of several microbial processes overlap. Near the PNM, four major microbial processes are active in nitrite cycling: ammonia oxidation, nitrite oxidation, nitrate reduction and nitrite uptake. The first two processes are mediated by the nitrifying archaeal/bacterial community, while the second two processes are primarily conducted by phytoplankton. The overlapping spatial habitats and substrate requirements for these microbes …


Atmospheric Input And Seasonal Inventory Of Dissolved Iron In The Sargasso Sea: Implications For Iron Dynamics In Surface Waters Of The Subtropical Ocean, Peter N. Sedwick, Bettina M. Sohst, K. N. Buck, S. Caprara, R. J. Johnson, D. C. Ohnemus, L. E. Sofen, A. Tagliabue, B. S. Twining, Tara E. Williams Jan 2023

Atmospheric Input And Seasonal Inventory Of Dissolved Iron In The Sargasso Sea: Implications For Iron Dynamics In Surface Waters Of The Subtropical Ocean, Peter N. Sedwick, Bettina M. Sohst, K. N. Buck, S. Caprara, R. J. Johnson, D. C. Ohnemus, L. E. Sofen, A. Tagliabue, B. S. Twining, Tara E. Williams

OES Faculty Publications

Constraining the role of dust deposition in regulating the concentration of the essential micronutrient iron in surface ocean waters requires knowledge of the flux of seawater-soluble iron in aerosols and the replacement time of dissolved iron (DFe) in the euphotic zone. Here we estimate these quantities using seasonally resolved DFe data from the Bermuda Atlantic Time-series Study region and weekly-scale measurements of iron in aerosols and rain from Bermuda during 2019. In response to seasonal changes in vertical mixing, primary production and dust deposition, surface DFe concentrations vary from ∼0.2 nM in early spring to >1 nM in late summer, …