Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Oceanography and Atmospheric Sciences and Meteorology

OES Faculty Publications

2023

Dinoflagellates

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

The Importance Of Winter Dinoflagellate Blooms In Chesapeake Bay— A Missing Link In Bay Productivity, Nicole C. Millette, Sophie Clayton, Margaret R. Mulholland, Leah Gibala-Smith, Michael Lane Jan 2023

The Importance Of Winter Dinoflagellate Blooms In Chesapeake Bay— A Missing Link In Bay Productivity, Nicole C. Millette, Sophie Clayton, Margaret R. Mulholland, Leah Gibala-Smith, Michael Lane

OES Faculty Publications

It is widely assumed that phytoplankton abundance and productivity decline during temperate winters because of low irradiance and temperatures. However, winter phytoplankton blooms commonly occur in temperate estuaries, but they are often undocumented because of reduced water quality monitoring in winter. The small body of in situ work that has been done on winter blooms suggests they can be of enormous consequence to ecosystems. However, because monitoring is often reduced or stopped altogether during winter, it is unclear how widespread these blooms are or how long they can last. We analyzed an over 30-year record of monthly phytoplankton monitoring samples …


Phytoplankton Thermal Trait Parameterization Alters Community Structure And Biogeochemical Processes In A Modeled Ocean, Stephanie I. Anderson, Clara Fronda, Andrew D. Barton, Sophie Clayton, Tatiana A. Rynearson, Stephanie Dutkiewicz Jan 2023

Phytoplankton Thermal Trait Parameterization Alters Community Structure And Biogeochemical Processes In A Modeled Ocean, Stephanie I. Anderson, Clara Fronda, Andrew D. Barton, Sophie Clayton, Tatiana A. Rynearson, Stephanie Dutkiewicz

OES Faculty Publications

Phytoplankton exhibit diverse physiological responses to temperature which influence their fitness in the environment and consequently alter their community structure. Here, we explored the sensitivity of phytoplankton community structure to thermal response parameterization in a modelled marine phytoplankton community. Using published empirical data, we evaluated the maximum thermal growth rates (μmax) and temperature coefficients (Q10; the rate at which growth scales with temperature) of six key Phytoplankton Functional Types (PFTs): coccolithophores, cyanobacteria, diatoms, diazotrophs, dinoflagellates, and green algae. Following three well-documented methods, PFTs were either assumed to have (1) the same μmax and …