Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Life Sciences

Effects Of Gm-Csf On Dendritic Cells And Regulatory T Cells In Parkinson’S Disease Patients And Models Of Parkinson’S Disease, Charles Schutt Dec 2017

Effects Of Gm-Csf On Dendritic Cells And Regulatory T Cells In Parkinson’S Disease Patients And Models Of Parkinson’S Disease, Charles Schutt

Theses & Dissertations

Parkinson’s disease (PD) is the most common neurodegenerative movement disorder. Pathologically, loss of nigrostriatal neurons and dopamine released by these neurons are responsible for PD motor symptoms. During PD, activation of resident microglia and infiltrating lymphocytes leads to progressive neuroinflammation and reduction in the number and function of regulatory immune cells. Neuroinflammation contributes to progressive neurodegeneration and declining motor function. Reducing neuroinflammation is the target for novel PD therapeutics. Our goal is to increase the number and function of regulatory T cells (Tregs) in PD patients to decrease neuroinflammation and reduce PD symptoms. One potential therapy is granulocyte-macrophage colony stimulating …


Novel Therapeutic Approaches For Juvenile Neuronal Ceroid Lipofuscinosis (Cln3), Megan Elizabeth Bosch Dec 2017

Novel Therapeutic Approaches For Juvenile Neuronal Ceroid Lipofuscinosis (Cln3), Megan Elizabeth Bosch

Theses & Dissertations

Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) is a lysosomal storage disease caused by autosomal recessive mutations in CLN3. Neuronal loss is thought to occur via glutamate excitotoxicity; however, little is known about neuron-astrocyte glutamate regulation in JNCL. We discovered that Cln3Δex7/8 astrocytes have significantly lower basal spontaneous Ca2+ oscillations and decreased responses to glutamate, indicating a disrupted signaling network. Cln3Δex7/8 astrocytes also displayed significantly lower basal mitochondrial respiration and ATP production, suggesting impaired metabolic functions. Concurrent with diminished astrocyte metabolism and Ca2+ signaling, Cln3Δex7/8 neurons were hyper-responsive to glutamate stimulation. These studies suggest that CLN3 …


A Role For Δ-Catenin In Synaptic Regulation, Li Yuan Dec 2017

A Role For Δ-Catenin In Synaptic Regulation, Li Yuan

Theses & Dissertations

The cadherin-catenin complex regulates cell-cell adhesion and signal transduction in epithelial cells. It is becoming increasingly evident that components of the complex regulate various aspects of neuronal architecture and function. δ-catenin is a cytosolic component of the cadherin-catenin complex and is predominantly expressed in the central nervous system. Loss of CTNND2, which encodes δ-catenin, is associated with intellectual disability and mutations in CTNND2 have been identified in autism, suggesting that δ-catenin is a critical component of the molecular machinery underlying neural circuit function. We have previously demonstrated that δ-catenin regulates multiple aspects of synaptic and dendritic development, including dendritic …


Inflammasome Activation By Methamphetamine Potentiates Lipopolysaccharide Stimulation Of Il-1Β Production In Microglia, Enquan Xu Aug 2017

Inflammasome Activation By Methamphetamine Potentiates Lipopolysaccharide Stimulation Of Il-1Β Production In Microglia, Enquan Xu

Theses & Dissertations

Methamphetamine (Meth) is a psychostimulant drug that is widely abused all around the world. The administration of Meth causes a strong instant euphoria effect, and long-term of abuse is correlative of drug-dependence and neurotoxicity. The neuroimaging studies demonstrated that the long-term abuse of Meth is associated with the reduction of the dopamine transporter (DAT) and vesicular monoamine transporter (VMAT2) in the striatum. Neuroinflammation is well-accepted as an important mechanism underlying the Meth-induced neurotoxicity. The over-activated microglia were found both in Meth human abusers and animal models.

NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is the most predominant Nod-like …


Pattern Recognition Receptors, Immune Proteins, And Nf-Κb Signaling Regulate Behaviors Associated With Aging Phenotypes, Nicholas W. Dekorver Aug 2017

Pattern Recognition Receptors, Immune Proteins, And Nf-Κb Signaling Regulate Behaviors Associated With Aging Phenotypes, Nicholas W. Dekorver

Theses & Dissertations

The aging process is accompanied by functional impairments, including reduced locomotor function, fragmentation of active states, and alterations in energy balance. Our lab has demonstrated that immune proteins are increased in specific regions of the mouse brain that correlate with strain specific deficits. These immune proteins include toll-like receptors (Tlr), class I major histocompatibility complex proteins (MHC I), and complement proteins. There is an increasing appreciation for the role of immune proteins in neurodevelopment; however, their involvement in age-associated deficits is poorly understood. Here, we present data demonstrating that 1) activation of a specific immune receptor (Tlr2) leads to changes …


Basal And Experience Dependent Ampar And Synapse Dynamics: Alterations In A Mouse Model Of Fragile X Syndrome, Anand Suresh May 2017

Basal And Experience Dependent Ampar And Synapse Dynamics: Alterations In A Mouse Model Of Fragile X Syndrome, Anand Suresh

Theses & Dissertations

Dendritic spines are the principal sites of excitatory synapses in the neurons of mammalian central nervous system. Spine are plastic, undergoing structural and functional changes under basal and experience dependent conditions. Spine properties are altered in a number of neurodevelopmental disorders including the Fragile X syndrome (FXS) which is the most common inherited form of intellectual disability. The structural reorganization of dendritic spines is thought to be associated with synaptic plasticity mechanisms that are deficient in FXS. A number of synaptic plasticity mechanisms involve modulation of synaptic strength via insertion or removal of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR). However, the link …