Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology

University of Kentucky

Series

2018

Microglia

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Ginsenoside Re Protects Methamphetamine-Induced Dopaminergic Neurotoxicity In Mice Via Upregulation Of Dynorphin-Mediated Κ-Opioid Receptor And Downregulation Of Substance P-Mediated Neurokinin 1 Receptor, Duy-Khanh Dang, Eun-Joo Shin, Dae-Joong Kim, Hai-Quyen Tran, Ji Hoon Jeong, Choon-Gon Jang, Seung-Yeol Nah, Jung Hwan Jeong, Jae Kyung Byun, Sung Kwon Ko, Guoying Bing, Jau-Shyong Hong, Hyoung-Chun Kim Feb 2018

Ginsenoside Re Protects Methamphetamine-Induced Dopaminergic Neurotoxicity In Mice Via Upregulation Of Dynorphin-Mediated Κ-Opioid Receptor And Downregulation Of Substance P-Mediated Neurokinin 1 Receptor, Duy-Khanh Dang, Eun-Joo Shin, Dae-Joong Kim, Hai-Quyen Tran, Ji Hoon Jeong, Choon-Gon Jang, Seung-Yeol Nah, Jung Hwan Jeong, Jae Kyung Byun, Sung Kwon Ko, Guoying Bing, Jau-Shyong Hong, Hyoung-Chun Kim

Neuroscience Faculty Publications

Background: We previously reported that ginsenoside Re (GRe) attenuated against methamphetamine (MA)-induced neurotoxicity via anti-inflammatory and antioxidant potentials. We also demonstrated that dynorphin possesses anti-inflammatory and antioxidant potentials against dopaminergic loss, and that balance between dynorphin and substance P is important for dopaminergic neuroprotection. Thus, we examined whether GRe positively affects interactive modulation between dynorphin and substance P against MA neurotoxicity in mice.

Methods: We examined changes in dynorphin peptide level, prodynorphin mRNA, and substance P mRNA, substance P-immunoreactivity, homeostasis in enzymatic antioxidant system, oxidative parameter, microglial activation, and pro-apoptotic parameter after a neurotoxic dose of MA to clarify the …


Minocycline Protects Developing Brain Against Ethanol-Induced Damage, Xin Wang, Kai Zhang, Fanmuyi Yang, Zhenhua Ren, Mei Xu, Jacqueline A. Frank, Zun-Ji Ke, Jia Luo Feb 2018

Minocycline Protects Developing Brain Against Ethanol-Induced Damage, Xin Wang, Kai Zhang, Fanmuyi Yang, Zhenhua Ren, Mei Xu, Jacqueline A. Frank, Zun-Ji Ke, Jia Luo

Pharmacology and Nutritional Sciences Faculty Publications

Fetal alcohol spectrum disorders (FASD) are caused by ethanol exposure during the pregnancy and is the leading cause of mental retardation. Ethanol exposure during the development results in the loss of neurons in the developing brain, which may underlie many neurobehavioral deficits associated with FASD. It is important to understand the mechanisms underlying ethanol-induced neuronal loss and develop appropriate therapeutic strategies. One of the potential mechanisms involves neuroimmune activation. Using a third trimester equivalent mouse model of ethanol exposure, we demonstrated that ethanol induced a wide-spread neuroapoptosis, microglial activation, and neuroinflammation in C57BL/6 mice. Minocycline is an antibiotic that inhibits …