Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology

PDF

University of Kentucky

Spinal Cord and Brain Injury Research Center Faculty Publications

Humans

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Chronic Traumatic Encephalopathy-Integration Of Canonical Traumatic Brain Injury Secondary Injury Mechanisms With Tau Pathology, Jacqueline R. Kulbe, Edward D. Hall Nov 2017

Chronic Traumatic Encephalopathy-Integration Of Canonical Traumatic Brain Injury Secondary Injury Mechanisms With Tau Pathology, Jacqueline R. Kulbe, Edward D. Hall

Spinal Cord and Brain Injury Research Center Faculty Publications

In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, football, football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy …


Targeting Mitochondrial Dysfunction In Cns Injury Using Methylene Blue; Still A Magic Bullet?, Hemendra J. Vekaria, Lora Talley Watts, Ai-Ling Lin, Patrick G. Sullivan Oct 2017

Targeting Mitochondrial Dysfunction In Cns Injury Using Methylene Blue; Still A Magic Bullet?, Hemendra J. Vekaria, Lora Talley Watts, Ai-Ling Lin, Patrick G. Sullivan

Spinal Cord and Brain Injury Research Center Faculty Publications

Complex, multi-factorial secondary injury cascades are initiated following traumatic brain injury, which makes this a difficult disease to treat. The secondary injury cascades following the primary mechanical tissue damage, are likely where effective therapeutic interventions may be targeted. One promising therapeutic target following brain injury are mitochondria. Mitochondria are complex organelles found within the cell, which act as powerhouses within all cells by supplying ATP. These organelles are also necessary for calcium cycling, redox signaling and play a major role in the initiation of cell death pathways. When mitochondria become dysfunctional, there is a tendency for the cell to loose …


Carisbamate Blockade Of T-Type Voltage-Gated Calcium Channels, Do Young Kim, Fang-Xiong Zhang, Stan T. Nakanishi, Timothy Mettler, Ik-Hyun Cho, Younghee Ahn, Florian Hiess, Lina Chen, Patrick G. Sullivan, S. R. Wayne Chen, Gerald W. Zamponi, Jong M. Rho Apr 2017

Carisbamate Blockade Of T-Type Voltage-Gated Calcium Channels, Do Young Kim, Fang-Xiong Zhang, Stan T. Nakanishi, Timothy Mettler, Ik-Hyun Cho, Younghee Ahn, Florian Hiess, Lina Chen, Patrick G. Sullivan, S. R. Wayne Chen, Gerald W. Zamponi, Jong M. Rho

Spinal Cord and Brain Injury Research Center Faculty Publications

Objectives

Carisbamate (CRS) is a novel monocarbamate compound that possesses antiseizure and neuroprotective properties. However, the mechanisms underlying these actions remain unclear. Here, we tested both direct and indirect effects of CRS on several cellular systems that regulate intracellular calcium concentration [Ca2+]i.

Methods

We used a combination of cellular electrophysiologic techniques, as well as cell viability, Store Overload‐Induced Calcium Release (SOICR), and mitochondrial functional assays to determine whether CRS might affect [Ca2+]i levels through actions on the endoplasmic reticulum (ER), mitochondria, and/or T‐type voltage‐gated Ca2+ channels.

Results

In CA3 pyramidal neurons, kainic …


Rod-Shaped Microglia Morphology Is Associated With Aging In 2 Human Autopsy Series, Adam D. Bachstetter, Eseosa T. Ighodaro, Yasmin Hassoun, Danah Aldeiri, Janna H. Neltner, Ela Patel, Erin L. Abner, Peter T. Nelson Apr 2017

Rod-Shaped Microglia Morphology Is Associated With Aging In 2 Human Autopsy Series, Adam D. Bachstetter, Eseosa T. Ighodaro, Yasmin Hassoun, Danah Aldeiri, Janna H. Neltner, Ela Patel, Erin L. Abner, Peter T. Nelson

Spinal Cord and Brain Injury Research Center Faculty Publications

A subtype of microglia is defined by the morphological appearance of the cells as rod-shaped. Little is known about this intriguing cell type, as there are only a few case reports describing rod-shaped microglia in the neuropathological literature. Rod-shaped microglia were shown recently to account for a substantial proportion of the microglia cells in the hippocampus of both demented and cognitively intact aged individuals. We hypothesized that aging could be a defining feature in the occurrence of rod-shaped microglia. To test this hypothesis, two independent series of autopsy cases (total n=168 cases), which covered the adult lifespan from 20 – …