Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Life Sciences

Novel Therapeutic Strategies For Alzheimer’S Disease: Prostaglandin D2 Signaling And Its Human Polymorphisms As Well As A Polypharmacological Approach, Charles H. Wallace Sep 2022

Novel Therapeutic Strategies For Alzheimer’S Disease: Prostaglandin D2 Signaling And Its Human Polymorphisms As Well As A Polypharmacological Approach, Charles H. Wallace

Dissertations, Theses, and Capstone Projects

Alzheimer’s disease (AD) is an age related neurodegenerative disease with pathology that includes amyloid plaques, neurofibrillary tangles and non-resolving neuroinflammation. Non-resolving neuroinflammation lasts the entire course of the disease and has deleterious effects and is often thought to accelerate AD pathology. Non-Steroidal Anti-inflammatory Drugs (NSAIDs) have commonly been used as therapeutics to treat pain, inflammation and vascular. NSAIDs work by altering the cyclooxygenase (COX) mediated biosynthesis of prostaglandins which are lipid mediators that have many physiological functions, for example nociception, inflammation and vasodilation. Epidemiological studies support the notion that NSAIDs could be used to treat AD. Yet, clinical trials using …


Clustered Protocadherins Ubiquitination And Phosphorylation Regulates Surface Expression, Albert Ptashnik Sep 2022

Clustered Protocadherins Ubiquitination And Phosphorylation Regulates Surface Expression, Albert Ptashnik

Dissertations, Theses, and Capstone Projects

Clustered protocadherins (Pcdhs) are a family of 60 adhesion-like molecules forming a neural barcode. In vertebrate neurons, 60 Pcdhs are coded by a large gene cluster. Numerous axons in the cluster are coding for the different extracellular, transmembrane, variable portion of the cytoplasmic and constant cytoplasmic domains where their expression is controlled epigenetically. These proteins mediate interactions between axons, dendrites, and glial cells during neural development. Yet, Pcdhs are not strictly adhesion molecules. In the amacrine cells of the retina, Pcdhs promote avoidance of the same cell dendrites, where in the cortex Pcdhs promote interactions between dendrites and astrocytes. In …


Mechanism Of Tau Propagation: Putative Therapeutic Approaches, Viktoriya Morozova Sep 2022

Mechanism Of Tau Propagation: Putative Therapeutic Approaches, Viktoriya Morozova

Dissertations, Theses, and Capstone Projects

One of the characteristics of Alzheimer’s disease and associated tauopathies is the accumulation and aggregation of hyperphosphorylated tau protein. The biological activity of tau is to bind to tubulin and promote its assembly into microtubules with subsequent stabilization of the latter. When tau gets hyperphosphorylated it cannot bind to tubulin and carry on its function, instead, it binds to normal tau and sequesters it from microtubules leading to disruption of microtubular assembly and ultimately to the death of neurons. Our lab had previously shown that tau phosphorylation sites 199, 212, 231, and 262, combined with the FTDP-17 mutation R406W (Pathological …


Development And Characterization Of A Novel, Genetically- Encoded Sensor To Image Sonic Hedgehog Signaling In Functional Circuits, Sonia Bernal Sep 2022

Development And Characterization Of A Novel, Genetically- Encoded Sensor To Image Sonic Hedgehog Signaling In Functional Circuits, Sonia Bernal

Dissertations, Theses, and Capstone Projects

Dynamic neurotransmitter and neuromodulator signaling in functional circuits is the neural substrate of animal behavior and cognition. The study of said circuits requires tools with sufficient spatiotemporal dynamics that can probe complex signaling patterns and decode their functional relevance by coupling the signal to behavioral output, ideally in awake, behaving animals. Much is known about the role of classical neurotransmitters such as dopamine in behavior, but a wide variety of peptides and small molecules also regulate neuronal transmission. One of these is Shh, whose presence has been observed in a variety of brain regions known to modulate movement, perception, and …


Role Of Nuclear Lamins In Oligodendrocyte Lineage Cells, Camila Yattah Sep 2022

Role Of Nuclear Lamins In Oligodendrocyte Lineage Cells, Camila Yattah

Dissertations, Theses, and Capstone Projects

Differentiation of oligodendrocytes from progenitor cells is a highly regulated process characterized by a series of molecular changes, resulting in nuclear and morphological features unique to the mature oligodendrocyte state. Heterochromatin formation starting at the nuclear periphery, as well as increased nuclear rigidity are characteristically observed. The nuclear periphery is characterized by the presence of the nuclear lamina and it has been implicated in higher-order genome organization in cells. Lamins are the protein components of the nuclear lamina, and their expression is dependent upon the cell differentiation stage of the cells. While Lamin B1 (LMNB1) expression is high in progenitors …


Role Of The G Protein Beta Gamma Subunits In Serotonin Transporter Dynamics, Nora Awadallah Sep 2022

Role Of The G Protein Beta Gamma Subunits In Serotonin Transporter Dynamics, Nora Awadallah

Dissertations, Theses, and Capstone Projects

Serotonin is a vital neurotransmitter and hormone with significant roles in almost every organ system. In the central nervous system, serotonin mediates physiological functions that in turn guide behavior and mood. Here, serotonin is released from serotonergic neurons and exerts its effects through serotonin receptors. Regulation of serotonin neurotransmission is important for the maintenance of its physiological functions; thus, extracellular serotonin must be sequestered to limit the intensity and duration of serotonin transmission. Disproportionate transmission is strongly linked with neurological and psychiatric ailments.

Extracellular serotonin levels are primarily mediated by the serotonin transporter (SERT), a critically important plasma membrane protein …


Withdrawal From Voluntary Oral Methamphetamine Reveals Female Specific Susceptibilities To Behavioral Deficits And Neurochemical Perpetuators Of Neurotoxicity And Drug Seeking Behavior, Nicoletta K. Memos Jun 2022

Withdrawal From Voluntary Oral Methamphetamine Reveals Female Specific Susceptibilities To Behavioral Deficits And Neurochemical Perpetuators Of Neurotoxicity And Drug Seeking Behavior, Nicoletta K. Memos

Dissertations, Theses, and Capstone Projects

MA is a potent, highly addictive psychomotor stimulant known to produce neurotoxic effects on the brain leading to neurological impairments1-6 characterized by neurodegeneration of dopaminergic fibers, cell bodies and pathways, as well as brain regions such as the hippocampus, frontal cortex, and midbrain1,5.

In MA addiction, women are more vulnerable to the behavioral and cognitive effects of MA compared to men. Adult human literature reveals gender differences in usage patterns and women demonstrate increased vulnerability to the neurotoxic effects and health effects of MA use. Women begin drug use at an earlier age, escalate drug use quicker, …


Genetic Circadian Mosaics And The Clock Network’S Contributions To Sleep, Lukasz Widziszewski Jun 2022

Genetic Circadian Mosaics And The Clock Network’S Contributions To Sleep, Lukasz Widziszewski

Dissertations, Theses, and Capstone Projects

Circadian rhythms are physiological and behavioral changes which follow a 24-hour cycle. Drosophila Melanogaster’s circadian clock neuronal network (CCNN) has been identified and several subpopulations have been characterized based on previous studies; the classifications of subpopulations of neurons within the CCNN are based on a return of anticipatory locomotor activity preceding the two daily light transitions (Lights on = dawn/Lights off = dusk). The neurons responsible for the return of anticipatory morning locomotor activity have been referred to as the M-cells, the group of neurons known to rescue evening anticipatory locomotor activity have been termed the E-cells. In this …


Novel Strategies For Glutamate Clearance In The Glia-Deprived Synaptic Hub Of C. Elegans, Joyce Chan Feb 2022

Novel Strategies For Glutamate Clearance In The Glia-Deprived Synaptic Hub Of C. Elegans, Joyce Chan

Dissertations, Theses, and Capstone Projects

As the major excitatory neurotransmitter in the mammalian brain, Glutamate (Glu) is critical for normal neuronal physiology. Disruption in Glu clearance results in hyper-stimulation of glutamatergic circuits, potentially leading to excitotoxic neurodegeneration. The canonical model of brain connectivity describes glutamatergic synapses as well insulated and enveloped by glia. These glia express Glu Transporters (GluTs) which work to clear Glu following synaptic activity. However, critical areas of the brain such as the mammalian hippocampus display poor synaptic isolation, which may result in Glu spillover between adjacent synapses and subsequent loss of circuit specificity. How accurate signal transmission is achieved in these …


Importin-Mediated Pathological Tau Nuclear Translocation Causes Disruption Of The Nuclear Lamina, Tdp-43 Mislocalization And Cell Death, Robert F. Candia, Leah S. Cohen, Viktoriya Morozova, Christopher Corbo, Alejandra D. Alonso Jan 2022

Importin-Mediated Pathological Tau Nuclear Translocation Causes Disruption Of The Nuclear Lamina, Tdp-43 Mislocalization And Cell Death, Robert F. Candia, Leah S. Cohen, Viktoriya Morozova, Christopher Corbo, Alejandra D. Alonso

Publications and Research

Tau is a cytosolic protein that has also been observed in the nucleus, where it has multiple proposed functions that are regulated by phosphorylation. However, the mechanism underlying the nuclear import of tau is unclear, as is the contribution of nuclear tau to the pathology of tauopathies. We have previously generated a pathological form of tau, PH-tau (pseudophosphorylation mutants S199E, T212E, T231E, and S262E) that mimics AD pathological behavior in cells, Drosophila, and a mouse model. Here, we demonstrated that PH-tau translocates into the nucleus of transiently transfected HEK-293 cells, but wildtype tau does not. We identified a putative …