Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Functional Consequences Of Rna Exosome Complex Alteration By Conformational Changes And Cofactor Binding, Jaeil Han Aug 2017

Functional Consequences Of Rna Exosome Complex Alteration By Conformational Changes And Cofactor Binding, Jaeil Han

Dissertations & Theses (Open Access)

The RNA exosome is an essential 3’-5 ribonuclease that processes or degrades a variety of RNA species in eukaryotes. It is composed of nine structural cores and one catalytic subunit, Rrp44. Structural studies captured two different conformations of Rrp44, Rrp44ch (channel) and Rrp44da (direct-access). The Rrp44ch appears to recruit RNA substrates from the central channel formed by the core subunits, while the substrate is directly recruited to Rrp44da bypassing the central channel. Although in vivo function of the Rrp44ch-exosome is extensively studied, the function or even the presence of the Rrp44da-exosome in …


Wisp1 Is An Overexpressed Driver Of Glioblastoma, Pushan R. Dasgupta Aug 2017

Wisp1 Is An Overexpressed Driver Of Glioblastoma, Pushan R. Dasgupta

Dissertations & Theses (Open Access)

Despite current multimodal therapies for glioblastoma (GBM) the prognosis remains very grim. There is a tremendous need to identify new genetic drivers which can serve as potential therapeutic targets. In order to find new drivers, we leveraged genomic datasets to conduct a context specific in vivo functional genomic screen of overexpressed and/or amplified genes in GBM. We identified WISP1, a secreted extracellular matrix protein, to be an overexpressed driver in GBM. Overexpression of WISP1 was able to drive tumor growth in various in vivo models. Knockdown of WISP1 with shRNAs resulted in reduced colony formation in vitro and reduced tumor …


Proteomic Identification Of Histone Post-Translational Modifications Induced By Dna Double-Strand Breaks And Novel Proteins Involved In The Dna Damage Response, Pingping Wang May 2017

Proteomic Identification Of Histone Post-Translational Modifications Induced By Dna Double-Strand Breaks And Novel Proteins Involved In The Dna Damage Response, Pingping Wang

Dissertations & Theses (Open Access)

Inaccurate repair of DNA double-strand breaks (DSBs) can lead to DNA mutation and chromosome rearrangements, causing human diseases such as cancer. Although we know the basic mechanisms of DSB repair, the added complexities in the chromatin context are unclear. This is partially due to the lack of unbiased systems for identifying proteins and post-translational modifications (PTMs) involved in DSB repair. In this work, we established a novel method, termed DSB-ChAP-MS (Double Strand Break-Chromatin Affinity Purification with Mass Spectrometry), for the affinity purification of a sequence-specific single copy endogenous chromosomal locus containing a DSB, followed by the proteomic identification of enriched …


Understanding The Mechanism Of Genomic Instability During Replicative Aging In Budding Yeast, Sangita Pal May 2017

Understanding The Mechanism Of Genomic Instability During Replicative Aging In Budding Yeast, Sangita Pal

Dissertations & Theses (Open Access)

Aging brings a gradual decline in molecular fidelity and biological functionality, resulting in age related phenotypes and diseases. Despite continued efforts to uncover the conserved aging pathways among eukaryotes, exact molecular causes of aging are still poorly understood. One of the most important hallmarks of aging is increased genomic instability. However, there remains much ambiguity as to the cause. I am studying the replicative life span (RLS) of the genetically tractable model organism Saccharomyces cerevisiae, or budding yeast using the innovative “mother enrichment program” as the method to isolate unparalleled numbers of aged yeast cells to investigate the molecular changes …


Analysis Of The Biochemical And Cellular Activities Of Substrate Binding By The Molecular Chaperone Hsp110/Sse1, Veronica M. Garcia May 2017

Analysis Of The Biochemical And Cellular Activities Of Substrate Binding By The Molecular Chaperone Hsp110/Sse1, Veronica M. Garcia

Dissertations & Theses (Open Access)

Molecular chaperones ensure protein quality during protein synthesis, delivery, damage repair, and degradation. The ubiquitous and highly conserved molecular chaperone 70-kDa heat-shock proteins (Hsp70s) are essential in maintaining protein homeostasis by cycling through high and low affinity binding of unfolded protein clients to facilitate folding. The Hsp110 class of chaperones are divergent relatives of Hsp70 that are extremely effective in preventing protein aggregation but lack the hallmark folding activity seen in Hsp70s. Hsp110s serve as Hsp70 nucleotide exchange factors (NEF) that facilitate the Hsp70 folding cycle by inducing release of protein substrate from Hsp70, thus recycling the chaperone for a …