Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Transcriptional And Post-Transcriptional Regulation Of Histone Variant H2a.Z During Sea Urchin Development, Mihai Hajdu Feb 2017

Transcriptional And Post-Transcriptional Regulation Of Histone Variant H2a.Z During Sea Urchin Development, Mihai Hajdu

Dissertations, Theses, and Capstone Projects

Histone variant H2A.Z promotes chromatin accessibility at transcriptional regulatory elements and is developmentally regulated in metazoans. We characterize the transcriptional and post-transcriptional regulation of H2A.Z in the purple sea urchin Strongylocentrotus purpuratus. H2A.Z depletion by antisense translation-blocking morpholino oligonucleotides during early development causes developmental collapse, in agreement with its previously demonstrated general role in transcriptional multipotency. During H2A.Z peak expression in 24-h embryos, endogenous H2A.Z 3’ UTR sequences stabilize GFP mRNAs relative to those with SV40 3’ UTR sequences, although the 3’UTR of H2A.Z does not determine the spatial distribution of H2A.Z transcripts during embryonic and postembryonic development. We …


Transcriptomic Analyses Of Cathatranthus Roseus Hairy Roots Overexpressing Crmyc2 And Orca3 And Roles Of Cross-Family Transcription Factor Interaction In Terpenoid Indole Alkaloid Biosynthesis, Xueyi Sui Jan 2017

Transcriptomic Analyses Of Cathatranthus Roseus Hairy Roots Overexpressing Crmyc2 And Orca3 And Roles Of Cross-Family Transcription Factor Interaction In Terpenoid Indole Alkaloid Biosynthesis, Xueyi Sui

Theses and Dissertations--Plant and Soil Sciences

Catharanthus roseus (Madagascar periwinkle), is a well-known medicinal plant that produces a vast array of terpenoid indole alkaloids (TIAs), including two anticancer compounds vinblastine and vincristine. Industrial scale production of TIAs is hampered by the difficulties of total chemical synthesis of these compounds and the fragmented knowledge on TIA pathway. Transcriptional regulation of the TIA biosynthetic pathway has not been thoroughly investigated in Catharanthus and only a few structural genes have been identified as the targets of two master regulators: the basic helix-loop-helix (bHLH) transcription factor (TF) CrMYC2 and APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF), ORCA3. Next generation sequencing (NGS) has been …