Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Life Sciences

Pot1 Proteins In Green Algae And Land Plants: Dna-Binding Properties And Evidence Of Co-Evolution With Telomeric Dna, Eugene V. Shakirov, Xiangyu Song, Jessica A. Joseph, Dorothy E. Shippen Oct 2019

Pot1 Proteins In Green Algae And Land Plants: Dna-Binding Properties And Evidence Of Co-Evolution With Telomeric Dna, Eugene V. Shakirov, Xiangyu Song, Jessica A. Joseph, Dorothy E. Shippen

Yevgeniy (Eugene) Shakirov

Telomeric DNA terminates with a single-stranded 3′ G-overhang that in vertebrates and fission yeast is bound by POT1 (Protection Of Telomeres). However, no in vitro telomeric DNA binding is associated with Arabidopsis POT1 paralogs. To further investigate POT1–DNA interaction in plants, we cloned POT1 genes from 11 plant species representing major branches of plant kingdom. Telomeric DNA binding was associated with POT1 proteins from the green alga Ostreococcus lucimarinus and two flowering plants, maize and Asparagus. Site-directed mutagenesis revealed that several residues critical for telomeric DNA recognition in vertebrates are functionally conserved in plant POT1 proteins. However, the plant proteins …


Heterologous Expression Of Pantoea Agglomerans Phytase Gene Optimized For Plant-Host Expression, N. N. Khabipova, L. R. Valeeva, I. B. Chastukhina, M. R. Sharipova, Eugene V. Shakirov Oct 2019

Heterologous Expression Of Pantoea Agglomerans Phytase Gene Optimized For Plant-Host Expression, N. N. Khabipova, L. R. Valeeva, I. B. Chastukhina, M. R. Sharipova, Eugene V. Shakirov

Yevgeniy (Eugene) Shakirov

Here we report expression and characterization of recombinant bacterial phytase PaPhyC from Pantoea sp. Codon-optimized phytase gene was expressed E.coli BL21 pLysS and protein expression was confirmed by Western blotting. Recombinant protein expressed in E.coli has high phytase activity. We show that PaPhyC recombinant phytase has different molecular masses when expressed in bacteria and plants, suggesting that possible protein glycosylation in plants may influence its overall size.


Sumoylation, Oliver Kerscher Sep 2019

Sumoylation, Oliver Kerscher

Oliver Kerscher

Eukaryotic cells utilise the dynamic addition and removal of SUMO, a small ubiquitin‐like modifier (UBL), to modulate protein functions, interactions and localisation. Protein SUMOylation involves a cascade of dedicated enzymes that facilitate the covalent modification of specific lysine residues on target proteins with monomers or polymers of SUMO. The cellular homeostasis of SUMOylated proteins is also regulated by SUMO proteases and SUMO‐targeted ubiquitin ligase (STUbLs). SUMO proteases cleave SUMO from modified proteins. In contrast, STUbLs ubiquitinate proteins modified with SUMO chains. Recent data suggests that ubiquitination via STUbLs effects the turnover of SUMOylated proteins as well as the spatio‐temporal composition …


Sumo-Targeted Ubiquitin Ligase (Stubl) Slx5 Regulates Proteolysis Of Centromeric Histone H3 Variant Cse4 And Prevents Its Mislocalization To Euchromatin, Kentaro Ohkuni, Yoshimitsu Takahashi, Alyona Fulp, Oliver Kerscher Sep 2019

Sumo-Targeted Ubiquitin Ligase (Stubl) Slx5 Regulates Proteolysis Of Centromeric Histone H3 Variant Cse4 And Prevents Its Mislocalization To Euchromatin, Kentaro Ohkuni, Yoshimitsu Takahashi, Alyona Fulp, Oliver Kerscher

Oliver Kerscher

Centromeric histone H3, CENP-ACse4, is essential for faithful chromosome segregation. Stringent regulation of cellular levels of CENP-ACse4 restricts its localization to centromeres. Mislocalization of CENP-ACse4 is associated with aneuploidy in yeast and flies and tumorigenesis in human cells; thus defining pathways that regulate CENP-A levels is critical for understanding how mislocalization of CENP-A contributes to aneuploidy in human cancers. Previous work in budding yeast shows that ubiquitination of overexpressed Cse4 by Psh1, an E3 ligase, partially contributes to proteolysis of Cse4. Here we provide the first evidence that Cse4 is sumoylated by E3 ligases Siz1 and Siz2 in vivo and …


Sumo-Targeted Ubiquitin Ligases (Stubls) Reduce The Toxicity And Abnormal Transcriptional Activity Associated With A Mutant, Aggregation-Prone Fragment Of Huntingtin, Kentaro Ohkuni, Nagesh Pasupala, Jennifer Peek, Oliver Kerscher Sep 2019

Sumo-Targeted Ubiquitin Ligases (Stubls) Reduce The Toxicity And Abnormal Transcriptional Activity Associated With A Mutant, Aggregation-Prone Fragment Of Huntingtin, Kentaro Ohkuni, Nagesh Pasupala, Jennifer Peek, Oliver Kerscher

Oliver Kerscher

Cell viability and gene expression profiles are altered in cellular models of neurodegenerative disorders such as Huntington’s Disease (HD). Using the yeast model system, we show that the SUMO-targeted ubiquitin ligase (STUbL) Slx5 reduces the toxicity and abnormal transcriptional activity associated with a mutant, aggregation-prone fragment of huntingtin (Htt), the causative agent of HD. We demonstrate that expression of an aggregation-prone Htt construct with 103 glutamine residues (103Q), but not the non-expanded form (25Q), results in severe growth defects in slx5Δ and slx8Δ cells. Since Slx5 is a nuclear protein and because Htt expression affects gene transcription, we …


Sumo Targeting Of A Stress-Tolerant Ulp1 Sumo Protease, Jennifer Peek, Catherine Harvey, Dreux Gray, Oliver Kerscher Sep 2019

Sumo Targeting Of A Stress-Tolerant Ulp1 Sumo Protease, Jennifer Peek, Catherine Harvey, Dreux Gray, Oliver Kerscher

Oliver Kerscher

SUMO proteases of the SENP/Ulp family are master regulators of both sumoylation and desumoylation and regulate SUMO homeostasis in eukaryotic cells. SUMO conjugates rapidly increase in response to cellular stress, including nutrient starvation, hypoxia, osmotic stress, DNA damage, heat shock, and other proteotoxic stressors. Nevertheless, little is known about the regulation and targeting of SUMO proteases during stress. To this end we have undertaken a detailed comparison of the SUMO-binding activity of the budding yeast protein Ulp1 (ScUlp1) and its ortholog in the thermotolerant yeast Kluyveromyces marxianus, KmUlp1. We find that the catalytic UD domains of both ScUlp1 and …


Determining The Functions Of Novel Genes Required For Photosynthesis, Gillian Gomer, Moshe Kafri, Martin Jonikas Aug 2019

Determining The Functions Of Novel Genes Required For Photosynthesis, Gillian Gomer, Moshe Kafri, Martin Jonikas

Gillian Gomer

As land available for agriculture remains limited, it is becoming more necessary to explore methods to improve the efficiency of crop production in order to support Earth’s growing populations. Newly characterized photosynthetic genes could improve our understanding of the way organisms convert light energy into fuel, allowing improvements in plant growth and environmental resistance. Using an insertion mutant library of the unicellular algae, Chlamydomonas reindhartii, that covers 83% of its genome, we are identifying and characterizing the hundreds of genes associated with photosynthesis. Chlamydomonas can be grown with or without a light source, which allows us to identify mutants displaying …


Cd21 And Cd24 Co-Expression: A Translational Model Between Mouse And Human, Abigail Benitez Jul 2019

Cd21 And Cd24 Co-Expression: A Translational Model Between Mouse And Human, Abigail Benitez

Abigail Benitez, PhD

Systemic Lupus Erythematosus and Rheumatoid Arthritis are B cell-mediated autoimmune diseases that afflict millions of people worldwide. B cell-targeted therapies for these diseases result in variable clinical outcomes. Thus, a need exists to better understand the dynamics of human B cell production and function. The mouse model has provided a foundation for understanding the mechanisms involved in human B cell development and autoimmune disease. However, differences in mouse and human B cells are not fully understood. Our work shows that the co-expression of CD21 and CD24, determined by 7-color flow cytometry, can be used to demarcate developmental subsets of B …


Determining The Functions Of Novel Genes Required For Photosynthesis, Gillian Gomer, Moshe Kafri, Martin Jonikas Jul 2019

Determining The Functions Of Novel Genes Required For Photosynthesis, Gillian Gomer, Moshe Kafri, Martin Jonikas

Gillian Gomer

As land available for agriculture remains limited, it is becoming more necessary to explore methods to improve the efficiency of crop production in order to support Earth’s growing populations. Newly characterized photosynthetic genes could improve our understanding of the way organisms convert light energy into fuel, allowing improvements in plant growth and environmental resistance. Using an insertion mutant library of the unicellular algae, Chlamydomonas reindhartii, that covers 83% of its genome, we are identifying and characterizing the hundreds of genes associated with photosynthesis. Chlamydomonas can be grown with or without a light source, which allows us to identify mutants displaying …


Gene Expression Programs During Shoot, Root, And Callus Development In Arabidopsis Tissue Culture, Ping Che, Sonia Lall, Dan Nettleton, Stephen H. Howell Jul 2019

Gene Expression Programs During Shoot, Root, And Callus Development In Arabidopsis Tissue Culture, Ping Che, Sonia Lall, Dan Nettleton, Stephen H. Howell

Dan Nettleton

Shoots can be regenerated from Arabidopsis (Arabidopsis thaliana) root explants in tissue culture through a two-step process requiring preincubation on an auxin-rich callus induction medium. Regenerating tissues can be directed along different developmental pathways leading to the formation of shoots, new roots, or callus by transferring to the appropriate organ induction medium. Using gene-profiling methods, we identified groups of genes that serve as molecular signatures of the different developmental processes, i.e. genes that were specifically up- or down-regulated on one developmental pathway, but not on others. One transcription factor gene that was up-regulated during early shoot development was …


Hierarchical Modeling And Differential Expression Analysis For Rna-Seq Experiments With Inbred And Hybrid Genotypes, Andrew Lithio, Dan Nettleton Jul 2019

Hierarchical Modeling And Differential Expression Analysis For Rna-Seq Experiments With Inbred And Hybrid Genotypes, Andrew Lithio, Dan Nettleton

Dan Nettleton

The performance of inbred and hybrid genotypes is of interest in plant breeding and genetics. High-throughput sequencing of RNA (RNA-seq) has proven to be a useful tool in the study of the molecular genetic responses of inbreds and hybrids to environmental stresses. Commonly used experimental designs and sequencing methods lead to complex data structures that require careful attention in data analysis. We demonstrate an analysis of RNA-seq data from a split-plot design involving drought stress applied to two inbred genotypes and two hybrids formed by crosses between the inbreds. Our generalized linear modeling strategy incorporates random effects for whole-plot experimental …


Root Type-Specific Reprogramming Of Maize Pericycle Transcriptomes By Local High Nitrate Results In Disparate Lateral Root Branching Patterns, Peng Yu, Jutta A. Baldauf, Andrew Lithio, Caroline Marcon, Dan Nettleton, Chunjian Li, Frank Hochholdinger Jul 2019

Root Type-Specific Reprogramming Of Maize Pericycle Transcriptomes By Local High Nitrate Results In Disparate Lateral Root Branching Patterns, Peng Yu, Jutta A. Baldauf, Andrew Lithio, Caroline Marcon, Dan Nettleton, Chunjian Li, Frank Hochholdinger

Dan Nettleton

The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching …


Analysis Of Porcine Transcriptional Response To Salmonella Enterica Serovar Choleraesuis Suggests Novel Targets Of Nfkappab Are Activated In The Mesenteric Lymph Node, Yanfang Wang, Olivre P. Couture, Long Qu, Jolita J. Uthe, Shawn M. D. Bearson, Daniel Kuhar, Joan K. Lunney, Dan Nettleton, Jack C. M. Dekkers, Christopher K. Tuggle Jul 2019

Analysis Of Porcine Transcriptional Response To Salmonella Enterica Serovar Choleraesuis Suggests Novel Targets Of Nfkappab Are Activated In The Mesenteric Lymph Node, Yanfang Wang, Olivre P. Couture, Long Qu, Jolita J. Uthe, Shawn M. D. Bearson, Daniel Kuhar, Joan K. Lunney, Dan Nettleton, Jack C. M. Dekkers, Christopher K. Tuggle

Dan Nettleton

Background: Specific knowledge of the molecular pathways controlling host-pathogen interactions can increase our understanding of immune response biology as well as provide targets for drug development and genetic improvement of disease resistance. Toward this end, we have characterized the porcine transcriptional response to Salmonella enterica serovar Choleraesuis (S. Choleraesuis), a Salmonella serovar that predominately colonizes swine, yet can cause serious infections in human patients. Affymetrix technology was used to screen for differentially expressed genes in pig mesenteric lymph nodes (MLN) responding to infection with S. Choleraesuis at acute (8 hours (h), 24 h and 48 h post-inoculation (pi)) and chronic …


Loss Of Rna–Dependent Rna Polymerase 2 (Rdr2) Function Causes Widespread And Unexpected Changes In The Expression Of Transposons, Genes, And 24-Nt Small Rnas, Yi Jia, Damon R. Lisch, Kazuhiro Ohtsu, Michael J. Scanlon, Dan Nettleton, Patrick S. Schnable Jul 2019

Loss Of Rna–Dependent Rna Polymerase 2 (Rdr2) Function Causes Widespread And Unexpected Changes In The Expression Of Transposons, Genes, And 24-Nt Small Rnas, Yi Jia, Damon R. Lisch, Kazuhiro Ohtsu, Michael J. Scanlon, Dan Nettleton, Patrick S. Schnable

Dan Nettleton

Transposable elements (TEs) comprise a substantial portion of many eukaryotic genomes and are typically transcriptionally silenced. RNA–dependent RNA polymerase 2 (RDR2) is a component of the RNA–directed DNA methylation (RdDM) silencing pathway. In maize, loss of mediator of paramutation1 (mop1) encoded RDR2 function results in reactivation of transcriptionally silenced Mu transposons and a substantial reduction in the accumulation of 24 nt short-interfering RNAs (siRNAs) that recruit RNA silencing components. An RNA–seq experiment conducted on shoot apical meristems (SAMs) revealed that, as expected based on a model in which RDR2 generates 24 nt siRNAs that suppress expression, most differentially …


Gene Mapping Via Bulked Segregant Rna-Seq (Bsr-Seq), Sanzhen Liu, Cheng-Ting Yeh, Ho Man Tang, Dan Nettleton, Patrick S. Schnable Jul 2019

Gene Mapping Via Bulked Segregant Rna-Seq (Bsr-Seq), Sanzhen Liu, Cheng-Ting Yeh, Ho Man Tang, Dan Nettleton, Patrick S. Schnable

Dan Nettleton

Bulked segregant analysis (BSA) is an efficient method to rapidly and efficiently map genes responsible for mutant phenotypes. BSA requires access to quantitative genetic markers that are polymorphic in the mapping population. We have developed a modification of BSA (BSR-Seq) that makes use of RNA-Seq reads to efficiently map genes even in populations for which no polymorphic markers have been previously identified. Because of the digital nature of next-generation sequencing (NGS) data, it is possible to conduct de novo SNP discovery and quantitatively genotype BSA samples by analyzing the same RNA-Seq data using an empirical Bayesian approach. In addition, analysis …


The Maize Brown Midrib2 (Bm2) Gene Encodes A Methylenetetrahydrofolate Reductase That Contributes To Lignin Accumulation, Ho Man Tang, Sanzhen Liu, Sarah Hill-Skinner, Wei Wu, Danielle Reed, Cheng-Ting Yeh, Dan Nettleton, Patrick S. Schnable Jun 2019

The Maize Brown Midrib2 (Bm2) Gene Encodes A Methylenetetrahydrofolate Reductase That Contributes To Lignin Accumulation, Ho Man Tang, Sanzhen Liu, Sarah Hill-Skinner, Wei Wu, Danielle Reed, Cheng-Ting Yeh, Dan Nettleton, Patrick S. Schnable

Dan Nettleton

The midribs of maize brown midrib (bm) mutants exhibit a reddish‐brown color associated with reductions in lignin concentration and alterations in lignin composition. Here, we report the mapping, cloning, and functional and biochemical analyses of the bm2 gene. The bm2 gene was mapped to a small region of chromosome 1 that contains a putative methylenetetrahydrofolate reductase (MTHFR) gene, which is down‐regulated in bm2 mutant plants. Analyses of multiple Mu‐induced bm2‐Mu mutant alleles confirmed that this constitutively expressed gene is bm2. Yeast complementation experiments and a previously published biochemical characterization show that the bm2 gene encodes a …


Estimation And Testing Of Gene Expression Heterosis, Tieming Ji, Peng Liu, Dan Nettleton Jun 2019

Estimation And Testing Of Gene Expression Heterosis, Tieming Ji, Peng Liu, Dan Nettleton

Dan Nettleton

Heterosis, also known as the hybrid vigor, occurs when the mean phenotype of hybrid offspring is superior to that of its two inbred parents. The heterosis phenomenon is extensively utilized in agriculture though the molecular basis is still unknown. In an effort to understand phenotypic heterosis at the molecular level, researchers have begun to compare expression levels of thousands of genes between parental inbred lines and their hybrid offspring to search for evidence of gene expression heterosis. Standard statistical approaches for separately analyzing expression data for each gene can produce biased and highly variable estimates and unreliable tests of heterosis. …


Transcriptomic And Anatomical Complexity Of Primary, Seminal, And Crown Roots Highlight Root Type-Specific Functional Diversity In Maize (Zea Mays L.), Huanhuan Tai, Xin Lu, Nin Opitz, Caroline Marcon, Anja Paschold, Andrew Lithio, Dan Nettleton, Frank Hochholdinger Jun 2019

Transcriptomic And Anatomical Complexity Of Primary, Seminal, And Crown Roots Highlight Root Type-Specific Functional Diversity In Maize (Zea Mays L.), Huanhuan Tai, Xin Lu, Nin Opitz, Caroline Marcon, Anja Paschold, Andrew Lithio, Dan Nettleton, Frank Hochholdinger

Dan Nettleton

Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across …


Post-Weaning Blood Transcriptomic Differences Between Yorkshire Pigs Divergently Selected For Residual Feed Intake, Haibo Liu, Yet T. Nguyen, Dan Nettleton, Jack C. M. Dekkers, Christopher K. Tuggle Jun 2019

Post-Weaning Blood Transcriptomic Differences Between Yorkshire Pigs Divergently Selected For Residual Feed Intake, Haibo Liu, Yet T. Nguyen, Dan Nettleton, Jack C. M. Dekkers, Christopher K. Tuggle

Dan Nettleton

Background: Improving feed efficiency (FE) of pigs by genetic selection is of economic and environmental significance. An increasingly accepted measure of feed efficiency is residual feed intake (RFI). Currently, the molecular mechanisms underlying RFI are largely unknown. Additionally, to incorporate RFI into animal breeding programs, feed intake must be recorded on individual pigs, which is costly and time-consuming. Thus, convenient and predictive biomarkers for RFI that can be measured at an early age are greatly desired. In this study, we aimed to explore whether differences exist in the global gene expression profiles of peripheral blood of 35 to 42 day-old …