Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

P53r245w Mutation Elicits Metastatic Phenotype In Pten Deficient Prostate Cancer, Ky Pham Aug 2019

P53r245w Mutation Elicits Metastatic Phenotype In Pten Deficient Prostate Cancer, Ky Pham

Dissertations & Theses (Open Access)

Trp53 mutations are the most frequent genetic alterations in prostate cancer and are associated with more aggressive disease and worse overall survival. The majority of Trp53 mutations in prostate cancer are missense mutations, resulting in amino acid substitutions with profound effect. In addition to the loss of wild type function, missense mutations in Trp53 result in a gain-of-function (GOF) phenotype. This GOF phenotype confers biologic advantages to the tumor cells, enabling them to metastasize and invade distant organs. In this study, we generated mice carrying a conditional prostate-specific p53R245W mutant and Pten deletion to access the role of this common …


Platiscity Of C. Elegans Germline Stem Cells Under Nutritional And Metabolic Stress, Kenneth Trimmer May 2019

Platiscity Of C. Elegans Germline Stem Cells Under Nutritional And Metabolic Stress, Kenneth Trimmer

Dissertations & Theses (Open Access)

Stem cells are integral for tissue maintenance and fertility. Therefore, understanding how stem cells are regulated under stress is imperative. When confronted with acute starvation, stem cells must conserve energy and metabolites to cope with the lack of an external source. Caenorhabditis elegans germline stem cells (GSCs) are an excellent model for studying stem cell properties and regulation as they can divide throughout the life of the organism. While GSCs are an adult stem cell population, their cell cycle structure more closely mimics mouse and human embryonic stem cells with short G1 and long S phases. In this thesis, I …


Sequence-Specific Gene Correction Of Cystic Fibrosis Airway Basal Cells, Varada Anirudhan May 2019

Sequence-Specific Gene Correction Of Cystic Fibrosis Airway Basal Cells, Varada Anirudhan

Dissertations & Theses (Open Access)

Cystic fibrosis (CF) is a lethal monogenic disease resulting from mutations in the CFTR gene which encodes a protein involved in regulating anion trans-epithelial transport. A three-base deletion in CFTR (termed as ΔF508 mutation), wherein CFTR protein is misfolded leading to its pre-mature degradation in the endoplasmic reticulum (ER), is the most common cause of this debilitating disease. Since CFTR is expressed in multiple body systems, CF affects different organs, but lung pathology is the greatest cause of death in affected patients. We achieved site-specific gene correction with an efficiency of ~10 % in CF airway basal cells homozygous for …


Higher Order Chromosome Organization And Recombination Dynamics Of Meiotic Prophase I In Mouse Spermatocytes, Rhea Kang May 2019

Higher Order Chromosome Organization And Recombination Dynamics Of Meiotic Prophase I In Mouse Spermatocytes, Rhea Kang

Dissertations & Theses (Open Access)

Meiotic recombination is required for parental chromosomes to find each other (pairing/synapsis) and to exchange genetic information thus allowing faithful segregation of chromosomes and the production of haploid gametes. At the start of meiotic prophase I, meiotic chromosomes organize into loop arrays that extrude out of the chromosome axis. Then, a large number of programmed double-strand breaks (DSBs) are formed at specific chromosomal locations or “hotspots” on parental chromosomes, which are repaired by homologous recombination (HR). HR produces either crossovers, which result in the exchange of flanking markers between homologs, or noncrossovers, which are short regions ofgene conversion to the …


Thiol-Based Misfolding: Linking Redox Balance To Cytosolic Proteostasis, Ford Amy May 2019

Thiol-Based Misfolding: Linking Redox Balance To Cytosolic Proteostasis, Ford Amy

Dissertations & Theses (Open Access)

The eukaryotic cytosolic proteome is vulnerable to changes in proteostatic and redox balance caused by temperature, pH, oxidants and xenobiotics. Cysteine-containing proteins are especially at risk as the thiol side chain is subject to oxidation, adduction and chelation by thiol-reactive compounds. All of these thiol-modifiers have been demonstrated to induce the heat shock response and recruit protein chaperones to sites of presumed protein aggregation in the budding yeast Saccharomyces cerevisiae. However, endogenous targets of thiol stress toxicity responsible for these outcomes are largely unknown. Furthermore, I hypothesize proteins identified as redox-active are prone to misfolding and aggregation by thiol-specific …