Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Life Sciences

Role Of Chronic Stress-Induced Neuroinflammation In Rodent Locus Coeruleus Physiology And Anxiety-Like Behaviors, Arthur Anthony Alfonso Reyes Jun 2023

Role Of Chronic Stress-Induced Neuroinflammation In Rodent Locus Coeruleus Physiology And Anxiety-Like Behaviors, Arthur Anthony Alfonso Reyes

Graduate School of Biomedical Sciences Theses and Dissertations

The locus coeruleus (LC), the primary site of brain norepinephrine (NE), is a key anatomical brain region implicated in the stress response. Stress is a neuroendocrine physiologic response to a stressor that promotes organism survival through adaptive change and restoration of homeostasis. The central stress response, which drives behavioral and physiological change, is primarily mediated by activating the hypothalamic-pituitary-adrenal (HPA) axis. While advantageous in the short term, chronic stress exposure can lead to HPA axis and LC dysregulation, which are thought to contribute to the etiology of anxiety disorders. Previous studies demonstrate the effects of acute stress in increasing LC …


Long-Term Impacts Of Acute Stressor Exposure On Locus Coeruleus Function And Anxiety-Like Behavior In Rats, Olga Borodovitsyna Apr 2021

Long-Term Impacts Of Acute Stressor Exposure On Locus Coeruleus Function And Anxiety-Like Behavior In Rats, Olga Borodovitsyna

Graduate School of Biomedical Sciences Theses and Dissertations

Stress is a physiological state characterized by behavioral arousal that occurs during exposure to harmful or threatening stimuli, and usually facilitates an adaptive behavioral response. The persistence of stress sometimes causes it to become maladaptive, potentially contributing to disease development, including physiological complications with altered neuroendocrine signaling and impaired function of organ systems, and psychological conditions including depression and anxiety. Anxiety disorders in particular are associated with a history of stress and are the most common class of mental disorders, with a lifetime prevalence of 33.7% in the general population. The locus coeruleus (LC) is a major node in the …


Profiling Prostate Cancer Therapeutic Resistance, Cameron A. Wade, Natasha Kyprianou Mar 2018

Profiling Prostate Cancer Therapeutic Resistance, Cameron A. Wade, Natasha Kyprianou

Urology Faculty Publications

The major challenge in the treatment of patients with advanced lethal prostate cancer is therapeutic resistance to androgen-deprivation therapy (ADT) and chemotherapy. Overriding this resistance requires understanding of the driving mechanisms of the tumor microenvironment, not just the androgen receptor (AR)-signaling cascade, that facilitate therapeutic resistance in order to identify new drug targets. The tumor microenvironment enables key signaling pathways promoting cancer cell survival and invasion via resistance to anoikis. In particular, the process of epithelial-mesenchymal-transition (EMT), directed by transforming growth factor-β (TGF-β), confers stem cell properties and acquisition of a migratory and invasive phenotype via resistance to anoikis. Our …


Identification Of An Association Of Tnfaip3 Polymorphisms With Matrix Metalloproteinase Expression In Fibroblasts In An Integrative Study Of Systemic Sclerosis-Associated Genetic And Environmental Factors.*, Peng Wei, Yang Yang, Xinjian Guo, Nainan Hei, Syeling Lai, Shervin Assassi, Mengyuan Liu, Filemon Tan, Xiaodong Zhou Mar 2016

Identification Of An Association Of Tnfaip3 Polymorphisms With Matrix Metalloproteinase Expression In Fibroblasts In An Integrative Study Of Systemic Sclerosis-Associated Genetic And Environmental Factors.*, Peng Wei, Yang Yang, Xinjian Guo, Nainan Hei, Syeling Lai, Shervin Assassi, Mengyuan Liu, Filemon Tan, Xiaodong Zhou

Faculty Publications

OBJECTIVE: Systemic sclerosis (SSc) is a fibrotic disease attributed to both genetic susceptibility and environmental factors. This study was undertaken to investigate the associations between SSc-associated genetic variants and the expression of extracellular matrix (ECM) genes in human fibroblasts stimulated with silica particles in time-course and dose-response experiments.

METHODS: A total of 200 fibroblast strains were examined for ECM gene expression after stimulation with silica particles. The fibroblasts were genetically profiled using Immunochip assays and then subjected to whole-genome genotype imputation. Associations of genotypes and gene expression were first analyzed in a Caucasian cohort and then validated in a meta-analysis …


Identification Of A Novel Gene On 10q22.1 Causing Autosomal Dominant Retinitis Pigmentosa (Adrp)., Stephen P Daiger, Lori S Sullivan, Sara J Bowne, Daniel C Koboldt, Susan H Blanton, Dianna K Wheaton, Cheryl E Avery, Elizabeth D Cadena, Robert K Koenekoop, Robert S Fulton, Richard K Wilson, George M Weinstock, Richard A Lewis, David G Birch Jan 2016

Identification Of A Novel Gene On 10q22.1 Causing Autosomal Dominant Retinitis Pigmentosa (Adrp)., Stephen P Daiger, Lori S Sullivan, Sara J Bowne, Daniel C Koboldt, Susan H Blanton, Dianna K Wheaton, Cheryl E Avery, Elizabeth D Cadena, Robert K Koenekoop, Robert S Fulton, Richard K Wilson, George M Weinstock, Richard A Lewis, David G Birch

Faculty Publications

Whole-genome linkage mapping identified a region on chromosome 10q21.3-q22.1 with a maximum LOD score of 3.0 at 0 % recombination in a six-generation family with autosomal dominant retinitis pigmentosa (adRP). All known adRP genes and X-linked RP genes were excluded in the family by a combination of methods. Whole-exome next-generation sequencing revealed a missense mutation in hexokinase 1, HK1 c.2539G > A, p.Glu847Lys, tracking with disease in all affected family members. One severely-affected male is homozygous for this region by linkage analysis and has two copies of the mutation. No other potential mutations were detected in the linkage region nor were …


Nuclear Pore Component Nup98 Is A Potential Tumor Suppressor And Regulates Posttranscriptional Expression Of Select P53 Target Genes, Stephan Singer, Ruiying Zhao, Anthony M. Barsotti, Anette Ouwehand, Mina Fazollahi, Elias Coutavas, Kai Breuhahn, Olaf Neumann, Thomas Longerich, Tobias Pusterla, Maureen A. Powers, Keith M. Giles, Peter J. Leedman, Jochen Hess, David Grunwald, Harmen J. Bussemaker, Robert H. Singer, Peter Schirmacher, Carol Prives Nov 2014

Nuclear Pore Component Nup98 Is A Potential Tumor Suppressor And Regulates Posttranscriptional Expression Of Select P53 Target Genes, Stephan Singer, Ruiying Zhao, Anthony M. Barsotti, Anette Ouwehand, Mina Fazollahi, Elias Coutavas, Kai Breuhahn, Olaf Neumann, Thomas Longerich, Tobias Pusterla, Maureen A. Powers, Keith M. Giles, Peter J. Leedman, Jochen Hess, David Grunwald, Harmen J. Bussemaker, Robert H. Singer, Peter Schirmacher, Carol Prives

David Grünwald

The p53 tumor suppressor utilizes multiple mechanisms to selectively regulate its myriad target genes, which in turn mediate diverse cellular processes. Here, using conventional and single-molecule mRNA analyses, we demonstrate that the nucleoporin Nup98 is required for full expression of p21, a key effector of the p53 pathway, but not several other p53 target genes. Nup98 regulates p21 mRNA levels by a posttranscriptional mechanism in which a complex containing Nup98 and the p21 mRNA 3'UTR protects p21 mRNA from degradation by the exosome. An in silico approach revealed another p53 target (14-3-3sigma) to be similarly regulated by Nup98. The expression …


Large-Scale Identification Of Chemically Induced Mutations In Drosophila Melanogaster., Nele A Haelterman, Lichun Jiang, Yumei Li, Vafa Bayat, Hector Sandoval, Berrak Ugur, Kai Li Tan, Ke Zhang, Danqing Bei, Bo Xiong, Wu-Lin Charng, Theodore Busby, Adeel Jawaid, Gabriela David, Manish Jaiswal, Koen J T Venken, Shinya Yamamoto, Rui Chen, Hugo J Bellen Oct 2014

Large-Scale Identification Of Chemically Induced Mutations In Drosophila Melanogaster., Nele A Haelterman, Lichun Jiang, Yumei Li, Vafa Bayat, Hector Sandoval, Berrak Ugur, Kai Li Tan, Ke Zhang, Danqing Bei, Bo Xiong, Wu-Lin Charng, Theodore Busby, Adeel Jawaid, Gabriela David, Manish Jaiswal, Koen J T Venken, Shinya Yamamoto, Rui Chen, Hugo J Bellen

Faculty Publications

Forward genetic screens using chemical mutagens have been successful in defining the function of thousands of genes in eukaryotic model organisms. The main drawback of this strategy is the time-consuming identification of the molecular lesions causative of the phenotypes of interest. With whole-genome sequencing (WGS), it is now possible to sequence hundreds of strains, but determining which mutations are causative among thousands of polymorphisms remains challenging. We have sequenced 394 mutant strains, generated in a chemical mutagenesis screen, for essential genes on the Drosophila X chromosome and describe strategies to reduce the number of candidate mutations from an average of …


Tlr4 Signaling Is Involved In Brain Vascular Toxicity Of Pcb153 Bound To Nanoparticles, Bei Zhang, Jeong June Choi, Sung Yong Eum, Sylvia Daunert, Michal Toborek May 2013

Tlr4 Signaling Is Involved In Brain Vascular Toxicity Of Pcb153 Bound To Nanoparticles, Bei Zhang, Jeong June Choi, Sung Yong Eum, Sylvia Daunert, Michal Toborek

Graduate Center for Nutritional Sciences Faculty Publications

PCBs bind to environmental particles; however, potential toxicity exhibited by such complexes is not well understood. The aim of the present study is to study the hypothesis that assembling onto nanoparticles can influence the PCB153-induced brain endothelial toxicity via interaction with the toll-like receptor 4 (TLR4). To address this hypothesis, TLR4-deficient and wild type control mice (males, 10 week old) were exposed to PCB153 (5 ng/g body weight) bound to chemically inert silica nanoparticles (PCB153-NPs), PCB153 alone, silica nanoparticles (NPs; diameter, 20 nm), or vehicle. Selected animals were also subjected to 40 min ischemia, followed by a 24 h reperfusion. …


The Role Of Ezh2 In The Regulation Of The Activity Of Matrix Metalloproteinases In Prostate Cancer Cells., Yong Jae Shin, Jeong-Ho Kim Jan 2012

The Role Of Ezh2 In The Regulation Of The Activity Of Matrix Metalloproteinases In Prostate Cancer Cells., Yong Jae Shin, Jeong-Ho Kim

Biochemistry and Molecular Medicine Faculty Publications

Degradation of the extracellular matrix (ECM), a critical step in cancer metastasis, is determined by the balance between MMPs (matrix metalloproteinases) and their inhibitors TIMPs (tissue inhibitors of metalloproteinases). In cancer cells, this balance is shifted towards MMPs, promoting ECM degradation. Here, we show that EZH2 plays an active role in this process by repressing the expression of TIMP2 and TIMP3 in prostate cancer cells. The TIMP genes are derepressed by knockdown of EZH2 expression in human prostate cancer cells but repressed by overexpression of EZH2 in benign human prostate epithelial cells. EZH2 catalyzes H3K27 trimethylation and subsequent DNA methylation …


Methamphetamine Administration Targets Multiple Immune Subsets And Induces Phenotypic Alterations Suggestive Of Immunosuppression., Robert Z. Harms, Brenda M. Morsey, Craig W. Boyer, Howard S. Fox, Nora E. Sarvetnick Jan 2012

Methamphetamine Administration Targets Multiple Immune Subsets And Induces Phenotypic Alterations Suggestive Of Immunosuppression., Robert Z. Harms, Brenda M. Morsey, Craig W. Boyer, Howard S. Fox, Nora E. Sarvetnick

Journal Articles: Regenerative Medicine

Methamphetamine (Meth) is a widely abused stimulant and its users are at increased risk for multiple infectious diseases. To determine the impact of meth on the immune system, we utilized a murine model that simulates the process of meth consumption in a typical addict. Our phenotypic analysis of leukocytes from this dose escalation model revealed that meth affected key immune subsets. Meth administration led to a decrease in abundance of natural killer (NK) cells and the remaining NK cells possessed a phenotype suggesting reduced responsiveness. Dendritic cells (DCs) and Gr-1(high) monocytes/macrophages were also decreased in abundance while Gr-1(low) monocytes/macrophages appear …


Human Cerebral Neuropathology Of Type 2 Diabetes Mellitus, Peter T. Nelson, Charles D. Smith, Erin L. Abner, Frederick A. Schmitt, Stephen W. Scheff, Gregory J. Davis, Jeffrey N. Keller, Gregory A. Jicha, Daron Davis, Wang-Xia Wang, Adria Hartman, Douglas G. Katz, William R. Markesbery May 2009

Human Cerebral Neuropathology Of Type 2 Diabetes Mellitus, Peter T. Nelson, Charles D. Smith, Erin L. Abner, Frederick A. Schmitt, Stephen W. Scheff, Gregory J. Davis, Jeffrey N. Keller, Gregory A. Jicha, Daron Davis, Wang-Xia Wang, Adria Hartman, Douglas G. Katz, William R. Markesbery

Pathology and Laboratory Medicine Faculty Publications

The cerebral neuropathology of Type 2 diabetes (CNDM2) has not been positively defined. This review includes a description of CNDM2 research from before the ‘Pubmed Era’. Recent neuroimaging studies have focused on cerebrovascular and white matter pathology. These and prior studies about cerebrovascular histopathology in diabetes are reviewed. Evidence is also described for and against the link between CNDM2 and Alzheimer's disease pathogenesis. To study this matter directly, we evaluated data from University of Kentucky Alzheimer's Disease Center (UK ADC) patients recruited while non-demented and followed longitudinally. Of patients who had come to autopsy (N = 234), 139 met …


Meiotic Cohesion Requires Accumulation Of Ord On Chromosomes Before Condensation, Eric M. Balicky, Matthew W. Endres, Cary Lai, Sharon E. Bickel Sep 2002

Meiotic Cohesion Requires Accumulation Of Ord On Chromosomes Before Condensation, Eric M. Balicky, Matthew W. Endres, Cary Lai, Sharon E. Bickel

Dartmouth Scholarship

Cohesion between sister chromatids is a prerequisite for accurate chromosome segregation during mitosis and meiosis. To allow chromosome condensation during prophase, the connections that hold sister chromatids together must be maintained but still permit extensive chromatin compaction. In Drosophila, null mutations in the orientation disruptor (ord) gene lead to meiotic nondisjunction in males and females because cohesion is absent by the time that sister kinetochores make stable microtubule attachments. We provide evidence that ORD is concentrated within the extrachromosomal domains of the nuclei ofDrosophila primary spermatocytes during early G2, but accumulates on the meiotic chromosomes by …


Prolonged Cyclooxygenase-2 Induction In Neurons And Glia Following Traumatic Brain Injury In The Rat, K I Strauss, M F Barbe, R M Marshall Demarest, R Raghupathi, S Mehta, R K Narayan Aug 2000

Prolonged Cyclooxygenase-2 Induction In Neurons And Glia Following Traumatic Brain Injury In The Rat, K I Strauss, M F Barbe, R M Marshall Demarest, R Raghupathi, S Mehta, R K Narayan

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Cyclooxygenase-2 (COX2) is a primary inflammatory mediator that converts arachidonic acid into precursors of vasoactive prostaglandins, producing reactive oxygen species in the process. Under normal conditions COX2 is not detectable, except at low abundance in the brain. This study demonstrates a distinctive pattern of COX2 increases in the brain over time following traumatic brain injury (TBI). Quantitative lysate ribonuclease protection assays indicate acute and sustained increases in COX2 mRNA in two rat models of TBI. In the lateral fluid percussion model, COX2 mRNA is significantly elevated (>twofold, p < 0.05, Dunnett) at 1 day postinjury in the injured cortex and bilaterally in the hippocampus, compared to sham-injured controls. In the lateral cortical impact model (LCI), COX2 mRNA peaks around 6 h postinjury in the ipsilateral cerebral cortex (fivefold induction, p < 0.05, Dunnett) and in the ipsilateral and contralateral hippocampus (two- and six-fold induction, respectively, p < 0.05, Dunnett). Increases are sustained out to 3 days postinjury in the injured cortex in both models. Further analyses use the LCI model to evaluate COX2 induction. Immunoblot analyses confirm increased levels of COX2 protein in the cortex and hippocampus. Profound increases in COX2 protein are observed in the cortex at 1-3 days, that return to sham levels by 7 days postinjury (p < 0.05, Dunnett). The cellular pattern of COX2 induction following TBI has been characterized using immunohistochemistry. COX2-immunoreactivity (-ir) rises acutely (cell numbers and intensity) and remains elevated for several days following TBI. Increases in COX2-ir colocalize with neurons (MAP2-ir) and glia (GFAP-ir). Increases in COX2-ir are observed in cerebral cortex and hippocampus, ipsilateral and contralateral to injury as early as 2 h postinjury. Neurons in the ipsilateral parietal, perirhinal and piriform cortex become intensely COX2-ir from 2 h to at least 3 days postinjury. In agreement with the mRNA and immunoblot results, COX2-ir appears greatest in the contralateral hippocampus. Hippocampal COX2-ir progresses from the pyramidal cell layer of the CA1 and CA2 region at 2 h, to the CA3 pyramidal cells and dentate polymorphic and granule cell layers by 24 h postinjury. These increases are distinct from those observed following inflammatory challenge, and correspond to brain areas previously identified with the neurological and cognitive deficits associated with TBI. While COX2 induction following TBI may result in selective beneficial responses, chronic COX2 production may contribute to free radical mediated cellular damage, vascular dysfunction, and alterations in cellular metabolism. These may cause secondary injuries to the brain that promote neuropathology and worsen behavioral outcome.


Pancreatic Expression Of Interleukin-4 Abrogates Insulitis And Autoimmune Diabetes In Nonobese Diabetic (Nod) Mice., Regula Mueller, Troy Krahl, Nora Sarvetnick Sep 1996

Pancreatic Expression Of Interleukin-4 Abrogates Insulitis And Autoimmune Diabetes In Nonobese Diabetic (Nod) Mice., Regula Mueller, Troy Krahl, Nora Sarvetnick

Journal Articles: Regenerative Medicine

Diabetes in nonobese diabetic (NOD) mice is a T cell-dependent autoimmune disease. The destructive activities of autoreactive T cells have been shown to be tightly regulated by effector molecules. In particular, T helper (Th) 1 cytokines have been linked to diabetes pathogenesis, whereas Th2 cytokines and the cells that release them have been postulated to be protective from disease. To test this hypothesis, we generated transgenic NOD mice that express interleukin (IL) 4 in their pancreatic beta cells under the control of the human insulin promoter. We found that transgenic NOD-IL-4 mice, both females and males, were completely protected from …


Il-10 Is Necessary And Sufficient For Autoimmune Diabetes In Conjunction With Nod Mhc Homozygosity., Myung-Shik Lee, Regula Mueller, Linda S. Wicker, Laurence B. Peterson, Nora Sarvetnick Jun 1996

Il-10 Is Necessary And Sufficient For Autoimmune Diabetes In Conjunction With Nod Mhc Homozygosity., Myung-Shik Lee, Regula Mueller, Linda S. Wicker, Laurence B. Peterson, Nora Sarvetnick

Journal Articles: Regenerative Medicine

Contrary to expectations based on in vitro experiments, we previously found that pancreatic IL-10 did not inhibit autoimmune diabetes but accelerated it in an MHC-dependent manner. Therefore, the ability of IL-10 to overcome the absence of all non-MHC diabetes susceptibility (Idd) alleles was studied in transgenic mice expressing pancreatic IL-10 backcrossed to B10.H2g7 congenic mice, which have no Idd alleles other than NOD MHC (H2g7). IL-10 transgenic backcross 1 (BC1) mice with H2g7/g7 haplotype developed clear-cut insulitis and diabetes, but neither transgenic mice with the H2g/b haplotype nor nontransgenic BC1 mice did so. Further implicating IL-10 in autoimmune diabetes, anti-IL-10 …


Production Of Interleukin 10 By Islet Cells Accelerates Immune-Mediated Destruction Of Beta Cells In Nonobese Diabetic Mice., Lise Wogensen, Myung-Shik Lee, Nora Sarvetnick Apr 1994

Production Of Interleukin 10 By Islet Cells Accelerates Immune-Mediated Destruction Of Beta Cells In Nonobese Diabetic Mice., Lise Wogensen, Myung-Shik Lee, Nora Sarvetnick

Journal Articles: Regenerative Medicine

The T helper type 2 (Th2) cell product interleukin 10 (IL-10) inhibits the proliferation and function of Th1 lymphocytes and macrophages (M phi). The nonobese diabetic mouse strain (NOD/Shi) develops a M phi and T cell-dependent autoimmune diabetes that closely resembles human insulin-dependent diabetes mellitus (IDDM). The objective of the present study was to explore the consequences of localized production of IL-10 on diabetes development in NOD/Shi mice. Surprisingly, local production of IL-10 accelerated the onset and increased the prevalence of diabetes, since diabetes developed at 5-10 wk of age in 92% of IL-10 positive I-A beta g7/g7, I-E- mice …