Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Analyzing Environmental Microbes For Genomic Regions Promoting Ionic Liquid Tolerance In E. Coli, Ann Nguyen, Alison Richins, Thomas Rüegg, Steven Singer, Michael Thelen Aug 2012

Analyzing Environmental Microbes For Genomic Regions Promoting Ionic Liquid Tolerance In E. Coli, Ann Nguyen, Alison Richins, Thomas Rüegg, Steven Singer, Michael Thelen

STAR Program Research Presentations

Ionic liquids (ILs) are promising as solvents to increase the efficiency of biofuel production; however, ILs are toxic to microbes used in the fermentation of liquid fuels. To engineer IL resistant biofuel hosts, environmental bacteria were screened for tolerance, and these were used to create gene libraries to test in E. coli. Future characterization of these libraries using molecular techniques will be used to identify genes that contribute IL-tolerance to transformed microbes.


Mutation And Complementation Of A Cellulose Synthase (Cesa) Gene, Ahmed Y. El-Araby May 2012

Mutation And Complementation Of A Cellulose Synthase (Cesa) Gene, Ahmed Y. El-Araby

Senior Honors Projects

Cellulose is a carbohydrate polymer that is composed of repeating glucose subunits. Being the most abundant organic compound in the biosphere and comprising a large percentage of all plant biomass, cellulose is extremely plentiful and has a significant role in nature. Cellulose is present in plant cell walls, in commercial products such as those made from wood or cotton, and is of interest to the biofuel industry as a potential alternative fuel source. Although indigestible by humans, cellulose is nutritionally valuable, serving as a dietary fiber. Because of its ubiquity and importance in many areas, studying cellulose will prove to …