Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Modulation Of Anti-Tumor Immune Response By Tgf-Β-Inducible Early Gene 1 (Tieg1), Andi Cani Jan 2012

Modulation Of Anti-Tumor Immune Response By Tgf-Β-Inducible Early Gene 1 (Tieg1), Andi Cani

Wayne State University Theses

Cancer immunotherapy has had limited clinical efficacy partly because regulatory T cells (Treg) suppress the immune response to tumor-associated antigens. Inducible regulatory T cells (iTreg), which are converted from naïve CD4 T cells by TGF-β, an abundant cytokine in the tumor microenvironment, may contribute to this immune suppression. Induction of Foxp3 by TGF-β is mediated by the transcription factor TIEG1 and abrogation of this protein prevents Foxp3 expression. We are testing the hypothesis that blockade of TIEG1 to prevent iTreg conversion will enhance immune response in DNA vaccination to the tumor associated antigen Her-2. Wild type and TIEG1 knockout mice …


Investigation Of A 16s Rna Central Domain Pseudoknot, Jenna Marie Jasinski-Bolak Jan 2012

Investigation Of A 16s Rna Central Domain Pseudoknot, Jenna Marie Jasinski-Bolak

Wayne State University Theses

X-ray crystallography of the prokaryotic 30S ribosomal subunit revealed a myriad of complex RNA-RNA, RNA-protein, and protein-protein interactions. Among these are several phylogenetically conserved RNA pseudoknots. Pseudoknots are structurally and functionally diverse RNA secondary structures. They are generally formed by two short complimentary sequences separated by many bases of single stranded regions or loops. These relatively simple folds are often yield complex structures that are key components of functionally important conformational changes in RNA structure. One such pseudoknot is located in the central domain of the 16S rRNA.

The central domain pseudoknot is formed by Watson-Crick base pairing between G570-C866 …


Disrupting Cxcr2 Macromolecular Complex Pdz-Domain Interactions During Inflammatory Chemotaxis, Marcello Castelvetere Jan 2012

Disrupting Cxcr2 Macromolecular Complex Pdz-Domain Interactions During Inflammatory Chemotaxis, Marcello Castelvetere

Wayne State University Theses

Neutrophils are the body's first responders to inflammation, being the most abundant white blood cell type in circulation and they quickly initiate an immune response through chemokine signaling. Inflammatory chemokines signal via their receptor CXCR2, which initiates an inflammatory response, recruiting leukocytes to sites of inflammation. Chemokine signaling is important for proper host protection, yet uncontrolled activity is responsible for a variety of pathological conditions: including rheumatoid arthritis, ischemia-reperfusion injury, arteriosclerosis, multiple sclerosis, psoriasis, inflammatory bowel disease, and allergic reactions.

In this report I show a CXCR2 macromolecular signaling complex exists in neutrophils, containing NHERF1 and PLCβ2. I also demonstrate …