Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Understanding The Epigenetic Role Of 8-Oxoguanine And Ogg1 In Non-Small Cell Lung Cancer, Kyrellos Ibrahim Jan 2021

Understanding The Epigenetic Role Of 8-Oxoguanine And Ogg1 In Non-Small Cell Lung Cancer, Kyrellos Ibrahim

CMC Senior Theses

Oxidative damage to the genome can form 8-oxoguanine (oxoG), a premutagenic lesion suggested to play an epigenetic role in the regulation of various cellular pathways. Alongside oxoG in this regulation is the 8-oxoguanine DNA glycosylase (OGG1), which primarily functions to repair oxoG damage via base excision repair, but is also implicated in recruiting NFκB and impacting gene expression associated with cancer growth. This proposal aims to build genome-wide maps of oxoG occupancy, and indirectly OGG1 localization, in healthy lung cells and in non-small cell lung cancer adenocarcinoma cells in order to identify regulatory regions in the genome at which oxoG …


Using Nmr Spectroscopy And Computational Chemistry To Confirm The Structure Of Novel Antibiotic Nocamycin O, Stephanie Lewis Jan 2021

Using Nmr Spectroscopy And Computational Chemistry To Confirm The Structure Of Novel Antibiotic Nocamycin O, Stephanie Lewis

CMC Senior Theses

In recent years, many medically promising antibiotics have been discovered in nature, especially in insect-microbe symbioses. One of the better-studied examples of this kind of defensive relationship is that of fungus-growing ants and the antibiotic-producing Actinobacteria. These bacteria produce several defensive chemicals with myriad uses, including one antibiotic that inhibits the growth of several bacterial strains, including other Actinobacteria. This antibiotic (known as nocamycin O) is a promising candidate for medicinal use due to its similarities to bacterial RNA polymerase inhibitors tirandamycin and streptolydigin, which inhibit several human pathogens. The determination of the structure of nocamycin O will be an …


Antifungal Defense Molecules From Bacterial Symbionts Of North American Trachymyrmex Ants, Georgia Scherer Jan 2020

Antifungal Defense Molecules From Bacterial Symbionts Of North American Trachymyrmex Ants, Georgia Scherer

CMC Senior Theses

Defensive symbioses, in which microbes provide molecular defenses for an animal host, hold great potential as untapped sources of therapeutically useful antibiotics. Fungus-growing ants use antifungal defenses from bacterial symbionts to suppress pathogenic fungi in their nests. Preliminary chemical investigations of symbiotic bacteria from this large family of ants have uncovered novel antifungal molecules with therapeutic potential, such as dentigerumycin and selvamicin.

In this study, the bacterial symbionts of North American Trachymyrmex fungus-growing ants are investigated for antifungal molecules. Plate-based bioassays using ecologically-relevant fungal pathogens confirmed that these bacteria have antifungal activity. In order to purify and identify the antifungal …


Molecular Modeling Of Novel Tryptamine Analogs With Antibiotic Potential Through Their Inhibition Of Tryptophan Synthase, Jared Schattenkerk Jan 2017

Molecular Modeling Of Novel Tryptamine Analogs With Antibiotic Potential Through Their Inhibition Of Tryptophan Synthase, Jared Schattenkerk

CMC Senior Theses

The growing prevalence of antibiotic-resistant bacteria is a global health crisis that threatens the effectiveness of antibiotics in medical treatment. Increases in the number of antibiotic-resistant bacteria and a drop in the pharmaceutical development of novel antibiotics have combined to form a situation that is rapidly increasing the likelihood of a post-antibiotic era. The development of antibiotics with novel enzymatic targets is critical to stall this growing crisis. In silico methods of molecular modeling and drug design were utilized in the development of novel tryptamine analogs as potential antibiotics through their inhibition of the bacterial enzyme tryptophan synthase. Following the …


A Proposal To Test The Effects Of Factor Ecat1 On Pluripotency, From Reprogramming To Differentiation Of Human Somatic Cells, Vritti R. Goel Jan 2012

A Proposal To Test The Effects Of Factor Ecat1 On Pluripotency, From Reprogramming To Differentiation Of Human Somatic Cells, Vritti R. Goel

CMC Senior Theses

The field of stem cell research has been growing more because of the interest in using stem cells to cure diseases and heal injuries. Human embryonic stem cells, because of the controversy surrounding them—and subsequently the difficulties in acquiring samples of the existing aging cell lines—can only be used in limited capacities. While the development of induced pluripotent stem cells in the last decade has allowed the field to progress closer to medical treatments, the low efficiency of reprogramming a somatic cell to a pluripotent state, and the vast molecular and genomic differences between human embryonic stem cells and human …