Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Life Sciences

The Role Of Membrane Domains In Protein And Lipid Sorting During Endocytic Traffic, Blanca B. Diaz-Rohrer Dec 2019

The Role Of Membrane Domains In Protein And Lipid Sorting During Endocytic Traffic, Blanca B. Diaz-Rohrer

Dissertations & Theses (Open Access)

The lipid and protein composition of the plasma membrane (PM) must be tightly controlled to maintain cellular functionality, despite constant, rapid endocytosis. Because de novo synthesis of proteins and lipids is energetically costly, the cell depends on active recycling to return endocytosed membrane components back to the PM. For most proteins, the mechanisms and pathways of their PM retention remain unknown. The work presented here shows that association with ordered membrane microdomains is fully sufficient for PM recycling and that abrogation of raft partitioning leads to their degradation in lysosomes. These findings support a model wherein ordered membrane domains mediate …


The Gsk-3Β-Fbxl21 Axis Regulates Tcap Via Ubiquitin-Mediated Proteasomal Pathway In The Cytoplasm, Jiah Yang Aug 2019

The Gsk-3Β-Fbxl21 Axis Regulates Tcap Via Ubiquitin-Mediated Proteasomal Pathway In The Cytoplasm, Jiah Yang

Dissertations & Theses (Open Access)

Protein turnover is one of the most essential mechanisms controlling circadian rhythms. F-Box and Leucine Rich Repeat Protein21 (FBXL21) is a circadian E3 ligase which shows oscillatory mRNA transcripts and protein levels. It was previously found to perform subcellular compartment-specific E3 ligase activities targeting the core clock proteins CRYPTOCHROME(CRY)1/2. Here we identified a new sarcomeric target substrate, Telethonin(TCAP), which also shows circadian oscillation in its mRNA transcript and protein expression and, importantly, interaction with FBXL21 in an anti-phasic manner. Via computational and pharmacological tests, we identified Glycogen Synthase Kinase-3β(GSK-3β) as a regulator of FBXL21. Biochemical and molecular characterizations demonstrated that …


Investigations Of The Structure-Function Relationship In Kainate Receptors Using FöRster Resonance Energy Transfer, Douglas Litwin Aug 2019

Investigations Of The Structure-Function Relationship In Kainate Receptors Using FöRster Resonance Energy Transfer, Douglas Litwin

Dissertations & Theses (Open Access)

Kainate receptors belong to the family of ion channels known as the ionotropic glutamate receptors. Ionotropic glutamate receptors mediate the majority of excitatory synaptic transmission, modulate the release of presynaptic glutamate, and facilitate dendrite formation. Kainate receptors are unique among the ionotropic glutamate receptors in being modulated by sodium ions. They have also been implicated in the development of higher learning and epilepsy. In recent years a wealth of structural data has become available for the AMPA and NMDA classes; however, the structural characterization of kainate receptors has been limited. The work in this dissertation utilizes luminescence resonance energy transfer …


Obscurin Mediates Ankyrin Complex Formation In The Heart, Janani Subramaniam Aug 2019

Obscurin Mediates Ankyrin Complex Formation In The Heart, Janani Subramaniam

Dissertations & Theses (Open Access)

Distinctly organized domains of receptors, ion channels, transporters, signaling molecules, cell adhesion molecules, and contractile proteins are crucial to cardiac function. Interactions between adaptor proteins such as ankyrins and cytoskeletal proteins such as obscurin play a pivotal role in organizing these functional domains in cardiomyocytes. Therefore, dysfunction of both ankyrin as well as obscurin lead to a host of cardiovascular diseases such as arrhythmias and cardiomyopathies. Alternative splicing of ankyrin yields numerous isoforms that interact with obscurin at various sub-cellular domains. And while some of these obscurin-ankyrin complexes have been studied, many others have not been characterized. Further, previous studies …


Deubiquitinating Enzymes Promote Cancer Progression And Metastasis Via Regulating Protein Stability, Zhenna Xiao Aug 2019

Deubiquitinating Enzymes Promote Cancer Progression And Metastasis Via Regulating Protein Stability, Zhenna Xiao

Dissertations & Theses (Open Access)

Deubiquitinating enzymes (DUBs, also called deubiquitinases) are enzymes that remove monoubiquitin or polyubiquitin chains from target proteins. DUBs have critical roles in cell homeostasis and signal transduction, as they regulate protein degradation, subcellular localization, and protein-protein interaction. Deregulation of DUBs contributes substantially to tumor formation and progression, and therefore targeting DUBs may be a promising cancer therapy strategy. My dissertation focuses on identifying the DUBs of EZH2 and SNAI1, two proteins critical for cancer progression and metastasis, and establishing these DUBs as promising anti-cancer targets.

EZH2, the catalytic component of the PRC2 complex, silences gene transcription by histone methylation. High …


Dissecting The Roles Of Human Smc Complexes In Transcription Regulation And Chromatin Organization, Ruoyu Wang Aug 2019

Dissecting The Roles Of Human Smc Complexes In Transcription Regulation And Chromatin Organization, Ruoyu Wang

Dissertations & Theses (Open Access)

Metazoans utilize a constellation of distal regulatory elements to control gene transcription, and therefore they have to forge highly complex chromatin loops to spatially bridge these regulatory elements and genes in the three-dimensional (3D) genome. However, the hierarchy of chromatin contacts and their underlying mechanisms are not well-understood. SMC complexes including Cohesin complex and Condensin complex has been widely proposed to organize 3D genome structure, and further regulate metazoans’ gene transcription. Here, we aim to dissect the direct functions of SMC complexes (both Cohesin and Condensin) in transcriptional regulation and 3D genome organization, by utilizing an inducible protein degradation system. …


Ipsc Based Gene Correction And Disease Model Of A New Class Of Lgmd Due To Poglut1 Mutation, Jose Ortiz-Vitali Aug 2019

Ipsc Based Gene Correction And Disease Model Of A New Class Of Lgmd Due To Poglut1 Mutation, Jose Ortiz-Vitali

Dissertations & Theses (Open Access)

Recently, a novel class of muscular dystrophy has been discovered in a family due to autosomal recessive missense mutation in POGLUT1. Mutation of this enzyme leads to decreased O-glucosyltransferase activity and impaired Notch signaling, the pathways important for skeletal muscle stem cell (satellite cells) quiescence and activation. We hypothesize that reduced POGLUT1 activity and impaired Notch signaling is causative of this limb girdle muscular dystrophy through dysfunction of muscle stem cells and myogenic progenitors.

To test this, we have used iPSCs for disease modeling and rescue experiments. Using a CRISPR based gene targeting method, we aimed to correct the point …


The Role Of Gene Expression Noise In Mammalian Cell Survival, Kevin Farquhar May 2019

The Role Of Gene Expression Noise In Mammalian Cell Survival, Kevin Farquhar

Dissertations & Theses (Open Access)

Drug resistance and metastasis remain obstacles to effective cancer treatment. A major challenge contributing to this problem is cellular heterogeneity. Even in the same environment, cells with identical genomes can display cell-to-cell differences in gene expression, also known as gene expression noise. Gene expression noise can vary in magnitude in a population or in fluctuation time scales, which is influenced by gene regulatory networks.

Currently, it is unclear how gene expression noise from gene regulatory networks contributes to drug survival outcomes in mammalian cells. An isogenic cell line with a noise-modulating genetic system tuned to the same mean is required. …


Hsp70-Mediated Regulation Of Hsf1 Transcriptional Activity In Saccharomyces Cerevisiae, Sara Peffer May 2019

Hsp70-Mediated Regulation Of Hsf1 Transcriptional Activity In Saccharomyces Cerevisiae, Sara Peffer

Dissertations & Theses (Open Access)

In eukaryotic cells, protein homeostasis and cellular fitness is promoted by the transcription factor heat shock factor 1 (HSF1) during exposure to proteotoxic stress. HSF1 controls the basal and stress-induced expression of molecular chaperones and other protective targets. Dynamic regulation of HSF1 involves the major heat shock proteins Hsp70 and Hsp90. Recent advances in the understanding of this regulatory circuit in Saccharomyces cerevisiae have shown that the Hsp70 Ssa1 acts as a sensor for some proteotoxic stresses and is capable of a direct interaction with Hsf1. This work continues to explore the complex regulatory interaction between Hsf1 and Ssa1. I …


Development Of A High-Throughput System For Screening Of Anti-Prion Molecules, Katherine Do May 2019

Development Of A High-Throughput System For Screening Of Anti-Prion Molecules, Katherine Do

Dissertations & Theses (Open Access)

The misfolded prion protein causes and transmits disease in both humans and animals. As other infectious agents, prions display strain variation, which can generate different pathological outcomes in affected individuals. Unfortunately, there are no known therapies for these diseases, which at present are invariably fatal. In this work, the Protein Misfolding Cyclic Amplification technology (PMCA, an in vitro test that replicates minimum quantities of infectious prions) has been modified to screen for small molecules inhibiting prion protein misfolding in a strain-specific manner. In order to approach a high-throughput PMCA system, technical aspects in PMCA has been optimized for application of …


Thiol-Based Misfolding: Linking Redox Balance To Cytosolic Proteostasis, Ford Amy May 2019

Thiol-Based Misfolding: Linking Redox Balance To Cytosolic Proteostasis, Ford Amy

Dissertations & Theses (Open Access)

The eukaryotic cytosolic proteome is vulnerable to changes in proteostatic and redox balance caused by temperature, pH, oxidants and xenobiotics. Cysteine-containing proteins are especially at risk as the thiol side chain is subject to oxidation, adduction and chelation by thiol-reactive compounds. All of these thiol-modifiers have been demonstrated to induce the heat shock response and recruit protein chaperones to sites of presumed protein aggregation in the budding yeast Saccharomyces cerevisiae. However, endogenous targets of thiol stress toxicity responsible for these outcomes are largely unknown. Furthermore, I hypothesize proteins identified as redox-active are prone to misfolding and aggregation by thiol-specific …