Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 161

Full-Text Articles in Life Sciences

Placental Co-Transcriptional Activator Vestigial-Like 1 (Vgll1) Drives Tumorigenesis Via Increasing Transcription Of Proliferation And Invasion Genes, Heather Sonnemann Aug 2024

Placental Co-Transcriptional Activator Vestigial-Like 1 (Vgll1) Drives Tumorigenesis Via Increasing Transcription Of Proliferation And Invasion Genes, Heather Sonnemann

Dissertations & Theses (Open Access)

Vestigial-like 1 (VGLL1) is a co-transcriptional activator that binds to TEA domain containing transcription factors (TEADs). Its expression is upregulated in a variety of aggressive cancer types, including pancreatic and basal-like breast cancer, and increased transcription of VGLL1 is strongly correlated with poor prognosis and decreased overall patient survival. In normal tissues, VGLL1 is most highly expressed within placental trophoblast cells, which share the common attributes of rapid cellular proliferation and invasion with tumor cells. The impact of VGLL1 in cancer has not been fully elucidated and no VGLL1-targeted therapy currently exists. The aim of this study was to evaluate …


The Frequency Of Pathogenic Variation In The All Of Us Cohort Reveals Ancestry-Driven Disparities, Eric Venner, Karynne Patterson, Divya Kalra, Marsha M Wheeler, Yi-Ju Chen, Sara E Kalla, Bo Yuan, Jason H Karnes, Kimberly Walker, Joshua D Smith, Sean Mcgee, Aparna Radhakrishnan, Andrew Haddad, Philip E Empey, Qiaoyan Wang, Lee Lichtenstein, Diana Toledo, Gail Jarvik, Anjene Musick, Richard A Gibbs Feb 2024

The Frequency Of Pathogenic Variation In The All Of Us Cohort Reveals Ancestry-Driven Disparities, Eric Venner, Karynne Patterson, Divya Kalra, Marsha M Wheeler, Yi-Ju Chen, Sara E Kalla, Bo Yuan, Jason H Karnes, Kimberly Walker, Joshua D Smith, Sean Mcgee, Aparna Radhakrishnan, Andrew Haddad, Philip E Empey, Qiaoyan Wang, Lee Lichtenstein, Diana Toledo, Gail Jarvik, Anjene Musick, Richard A Gibbs

Faculty and Staff Publications

Disparities in data underlying clinical genomic interpretation is an acknowledged problem, but there is a paucity of data demonstrating it. The All of Us Research Program is collecting data including whole-genome sequences, health records, and surveys for at least a million participants with diverse ancestry and access to healthcare, representing one of the largest biomedical research repositories of its kind. Here, we examine pathogenic and likely pathogenic variants that were identified in the All of Us cohort. The European ancestry subgroup showed the highest overall rate of pathogenic variation, with 2.26% of participants having a pathogenic variant. Other ancestry groups …


A Signal To Divide: Apoptotic Extracellular Vesicles As Carriers Of Mitogenic And Immunogenic Signals, Safia Essien, Safia Essien Dec 2023

A Signal To Divide: Apoptotic Extracellular Vesicles As Carriers Of Mitogenic And Immunogenic Signals, Safia Essien, Safia Essien

Dissertations & Theses (Open Access)

Efficient replacement of dead cells in epithelial tissue is crucial for maintaining barrier function and tissue homeostasis. Apoptotic cells can signal to neighboring cells to stimulate proliferation and compensate for cell loss and maintain overall cell numbers in normal physiology and cancer. While dying cells can transmit instructive cues to neighboring cells, the molecular mechanisms that induce cell division are not well understood. Recent evidence suggests that apoptotic bodies (ABs) or apoptotic extracellular vesicles (AEVs) mediate cell-to-cell communication and carry diverse biologically active cellular cargo which can influence cell proliferation. This dissertation visualizes and characterizes AEVs in larval zebrafish and …


A Cancer-Specific Study On The Differentially Expressed Protein-Protein Interactions Of Fumarate Hydratase, Sydney Lac Dec 2023

A Cancer-Specific Study On The Differentially Expressed Protein-Protein Interactions Of Fumarate Hydratase, Sydney Lac

Dissertations & Theses (Open Access)

Fumarate hydratase (FH) is an enzyme used in the Krebs Cycle to convert fumarate to malate, and it is controlled by the FH gene. In this paper, we will investigate its role in Uterine Corpus Endometrial Carcinoma (UCEC) and how FH-deficient cells affect tumorigenesis. It is well-established that FH has been extensively studied in connection with renal cell carcinoma, skin and uterine leiomyomas, pheochromocytoma, and paraganglioma. However, we aim to construct an interaction network of significant genes related to the FH gene under conditions of FH deficiency in the Kreb Cycle. Creating an interactive network that illustrates the interconnectedness of …


Development Of Novel Methods To Study Host-Microbe Interactions In The Larval Zebrafish Gastrointestinal Tract, Anh K. Trinh Nguyen Dec 2023

Development Of Novel Methods To Study Host-Microbe Interactions In The Larval Zebrafish Gastrointestinal Tract, Anh K. Trinh Nguyen

Dissertations & Theses (Open Access)

The dynamic nature and inaccessible location of the intestine pose significant challenges to the study of intestinal physiology and pathology. Zebrafish larvae, possessing optical transparency and genetic tractability, offer an accessible and clinically relevant model for investigating dynamic events in the intestine via time-lapse imaging. In the first part of this work, I discuss our efforts to optimize the parameters of a foodborne infection assay using paramecia as a vehicle. This method provides an effective, high-throughput alternative to infection via immersion or oral gavage, and replicates the most common route of transmission of gastrointestinal (GI) infection in humans. The foodborne …


Acute Manipulation Of Erna Level For Dissecting Its Roles In Transcriptional Regulation, Lanxin Bei Aug 2023

Acute Manipulation Of Erna Level For Dissecting Its Roles In Transcriptional Regulation, Lanxin Bei

Dissertations & Theses (Open Access)

Enhancers are the central genetic elements controlling cell-type and state specific transcription programs to dictate cell fates during development. Mechanistic understanding of enhancer action is important for both biology and disease research. In the human genome, more than 60k human enhancers were found to produce non-coding transcripts named enhancer RNAs (eRNAs). These created a new challenge to understand enhancer functions, which now are not only DNA elements that promote transcription but also RNA-producing transcription units themselves. Importantly, deregulation of eRNAs was associated with various diseases such as cancer, immune disorders, and neurodegeneration. However, the direct role of eRNAs in transcriptional …


Structures Of Channelrhodopsin Paralogs In Peptidiscs Explain Their Contrasting K+ And Na+ Selectivities, Takefumi Morizumi, Kyumhyuk Kim, Hai Li, Elena G Govorunova, Oleg A Sineshchekov, Yumei Wang, Lei Zheng, Éva Bertalan, Ana-Nicoleta Bondar, Azam Askari, Leonid S Brown, John L Spudich, Oliver P Ernst Jul 2023

Structures Of Channelrhodopsin Paralogs In Peptidiscs Explain Their Contrasting K+ And Na+ Selectivities, Takefumi Morizumi, Kyumhyuk Kim, Hai Li, Elena G Govorunova, Oleg A Sineshchekov, Yumei Wang, Lei Zheng, Éva Bertalan, Ana-Nicoleta Bondar, Azam Askari, Leonid S Brown, John L Spudich, Oliver P Ernst

Faculty and Staff Publications

Kalium channelrhodopsin 1 from Hyphochytrium catenoides (HcKCR1) is a light-gated channel used for optogenetic silencing of mammalian neurons. It selects K+ over Na+ in the absence of the canonical tetrameric K+ selectivity filter found universally in voltage- and ligand-gated channels. The genome of H. catenoides also encodes a highly homologous cation channelrhodopsin (HcCCR), a Na+ channel with >100-fold larger Na+ to K+ permeability ratio. Here, we use cryo-electron microscopy to determine atomic structures of these two channels embedded in peptidiscs to elucidate structural foundations of their dramatically different cation selectivity. Together with structure-guided mutagenesis, we show that K+ versus Na+ …


Sequential Absorption Of Two Photons Creates A Bistable Form Of Rubyacr Responsible For Its Strong Desensitization, Oleg A Sineshchekov, Elena G Govorunova, Hai Li, Yumei Wang, John L Spudich May 2023

Sequential Absorption Of Two Photons Creates A Bistable Form Of Rubyacr Responsible For Its Strong Desensitization, Oleg A Sineshchekov, Elena G Govorunova, Hai Li, Yumei Wang, John L Spudich

Faculty and Staff Publications

Channelrhodopsins with red-shifted absorption, rare in nature, are highly desired for optogenetics because light of longer wavelengths more deeply penetrates biological tissue. RubyACRs (Anion ChannelRhodopsins), a group of four closely related anion-conducting channelrhodopsins from thraustochytrid protists, are the most red-shifted channelrhodopsins known with absorption maxima up to 610 nm. Their photocurrents are large, as is typical of blue- and green-absorbing ACRs, but they rapidly decrease during continuous illumination (desensitization) and extremely slowly recover in the dark. Here, we show that long-lasting desensitization of RubyACRs results from photochemistry not observed in any previously studied channelrhodopsins. Absorption of a second photon by …


Targeting Metabolic Alterations Associated With Smooth Muscle Α-Actin Pathogenic Variant Attenuates Moyamoya-Like Cerebrovascular Disease, Anita Kaw May 2023

Targeting Metabolic Alterations Associated With Smooth Muscle Α-Actin Pathogenic Variant Attenuates Moyamoya-Like Cerebrovascular Disease, Anita Kaw

Dissertations & Theses (Open Access)

Heterozygous pathogenic variants in ACTA2, encoding smooth muscle α-actin (α-SMA), predispose to thoracic aortic aneurysms and dissections. De novo missense variants disrupting ACTA2 arginine 179 (p.Arg179) cause a multisystemic disease termed smooth muscle dysfunction syndrome (SMDS), which is characterized by early onset thoracic aortic disease and moyamoya disease-like (MMD) cerebrovascular disease. The MMD-like cerebrovascular disease in SMDS patients is marked by bilateral steno-occlusive lesions in the distal internal carotid arteries (ICAs) and their branches. To study the molecular mechanisms that underlie the ACTA2 p.Arg179 variants, a smooth muscle-specific Cre-lox knock-in mouse model of the heterozygous Acta2 R179C variant, termed …


Regulation And Function Of Zeb1 Acetylation In Lung Adenocarcinoma Progression And Metastasis, Mabel Perez-Oquendo May 2023

Regulation And Function Of Zeb1 Acetylation In Lung Adenocarcinoma Progression And Metastasis, Mabel Perez-Oquendo

Dissertations & Theses (Open Access)

Lung cancer metastasis is leading the causes of cancer-related mortality in the United States and worldwide. Epithelial-to-mesenchymal transition (EMT) is a model for metastasis that results in loss of specialized epithelial cell contacts and acquisition of mesenchymal invasive capacity. Zinc finger E-box-binding homeobox 1 (ZEB1) recognizes and binds to E-boxes of epithelial gene promoters to repress its transcription. ZEB1 has inconsistent molecular weights, which have been attributed to post-translational modifications (PTMs). In the presented dissertation, I specifically addressed the gap in the molecular mechanisms by which PTMs of ZEB1 regulate its ability to induce EMT and how its activity might …


Lipid Nanoparticle-Mediated Mrna Delivery In Lung Fibrosis, Matteo Massaro, Suhong Wu, Gherardo Baudo, Haoran Liu, Scott Collum, Hyunho Lee, Cinzia Stigliano, Victor Segura-Ibarra, Harry Karmouty-Quintana, Elvin Blanco Apr 2023

Lipid Nanoparticle-Mediated Mrna Delivery In Lung Fibrosis, Matteo Massaro, Suhong Wu, Gherardo Baudo, Haoran Liu, Scott Collum, Hyunho Lee, Cinzia Stigliano, Victor Segura-Ibarra, Harry Karmouty-Quintana, Elvin Blanco

Student and Faculty Publications

mRNA delivery enables the specific synthesis of proteins with therapeutic potential, representing a powerful strategy in diseases lacking efficacious pharmacotherapies. Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by excessive extracellular matrix (ECM) deposition and subsequent alveolar remodeling. Alveolar epithelial type 2 cells (AEC2) and fibroblasts represent important targets in IPF given their role in initiating and driving aberrant wound healing responses that lead to excessive ECM deposition. Our objective was to examine a lipid nanoparticle (LNP)-based mRNA construct as a viable strategy to target alveolar epithelial cells and fibroblasts in IPF. mRNA-containing LNPs measuring ∼34 nm had …


Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam Dec 2022

Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam

Dissertations & Theses (Open Access)

ANK2 mutations in patients are associated with numerous arrhythmias, cardiomyopathies, and other heart defects. In the heart, AnkB, the protein encoded by ANK2, clusters relevant ion channels and cell adhesion molecules in several important domains; however, its role at Mitochondria Associated ER/SR Membranes (MAMs) has yet to be investigated. MAMs are crucial to mitochondrial function and metabolism and are signaling hubs implicated in various cardiac pathologies. Among several functions, these sites mediate the direct transfer of calcium from the ER/SR to the mitochondria to modulate ATP synthesis. Given that mitochondrial function and energy production are paramount to cardiovascular heath, …


Gating Intermediates Reveal Inhibitory Role Of The Voltage Sensor In A Cyclic Nucleotide-Modulated Ion Channel, Xiaolong Gao, Philipp A M Schmidpeter, Vladimir Berka, Ryan J Durham, Chen Fan, Vasanthi Jayaraman, Crina M Nimigean Nov 2022

Gating Intermediates Reveal Inhibitory Role Of The Voltage Sensor In A Cyclic Nucleotide-Modulated Ion Channel, Xiaolong Gao, Philipp A M Schmidpeter, Vladimir Berka, Ryan J Durham, Chen Fan, Vasanthi Jayaraman, Crina M Nimigean

Student and Faculty Publications

Understanding how ion channels gate is important for elucidating their physiological roles and targeting them in pathophysiological states. Here, we used SthK, a cyclic nucleotide-modulated channel from Spirochaeta thermophila, to define a ligand-gating trajectory that includes multiple on-pathway intermediates. cAMP is a poor partial agonist for SthK and depolarization increases SthK activity. Tuning the energy landscape by gain-of-function mutations in the voltage sensor domain (VSD) allowed us to capture multiple intermediates along the ligand-activation pathway, highlighting the allosteric linkage between VSD, cyclic nucleotide-binding (CNBD) and pore domains. Small, lateral displacements of the VSD S4 segment were necessary to open the …


The Emerging Role Of Notch3 Receptor Signalling In Human Lung Diseases, Manish Bodas, Bharathiraja Subramaniyan, Harry Karmouty-Quintana, Peter F Vitiello, Matthew S Walters Sep 2022

The Emerging Role Of Notch3 Receptor Signalling In Human Lung Diseases, Manish Bodas, Bharathiraja Subramaniyan, Harry Karmouty-Quintana, Peter F Vitiello, Matthew S Walters

Faculty and Staff Publications

The mammalian respiratory system or lung is a tree-like branching structure, and the main site of gas exchange with the external environment. Structurally, the lung is broadly classified into the proximal (or conducting) airways and the distal alveolar region, where the gas exchange occurs. In parallel with the respiratory tree, the pulmonary vasculature starts with large pulmonary arteries that subdivide rapidly ending in capillaries adjacent to alveolar structures to enable gas exchange. The NOTCH signalling pathway plays an important role in lung development, differentiation and regeneration post-injury. Signalling via the NOTCH pathway is mediated through activation of four NOTCH receptors …


The Role Of The Hypoxia-Inducible Factor 2 In Pancreatic Cancer: Mechanisms Of Tumor Immunosuppression And Intestinal Radioprotection, Carolina Garcia Garcia Aug 2022

The Role Of The Hypoxia-Inducible Factor 2 In Pancreatic Cancer: Mechanisms Of Tumor Immunosuppression And Intestinal Radioprotection, Carolina Garcia Garcia

Dissertations & Theses (Open Access)

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with dismal prognosis. The only curative option for patients is surgery, but over 80% of patients are not surgical candidates. Unfortunately, PDAC is resistant to the three remaining options. PDAC is characterized by a profoundly hypoxic and immunosuppressive stroma, which contributes to its therapeutic recalcitrance. Alpha-smooth muscle actin+ (αSMA+) cancer-associated fibroblasts (CAFs) are the most abundant stromal component, as well as mediators of stromal deposition. The hypoxia-inducible factors (HIF1 and HIF2) coordinate responses to hypoxia, yet, despite their known association to poor patient outcomes, their functions within the PDAC tumor microenvironment (TME) …


Grk3 Connects Angiogenesis And Neuroendocrine Differentiation In Prostate Cancer By Activating Hdac2 That Epigenetically Represses Tsp1 And Rest, Samira Naderinezhad Aug 2022

Grk3 Connects Angiogenesis And Neuroendocrine Differentiation In Prostate Cancer By Activating Hdac2 That Epigenetically Represses Tsp1 And Rest, Samira Naderinezhad

Dissertations & Theses (Open Access)

Prostate cancer (PCa) is the second most frequent cancer and the second leading cause of mortality in men in the United States. Neuroendocrine prostate cancer (NEPC) is the aggressive subset of castration-resistant prostate cancer (CRPC), found in ~20% lethal CRPC. The mechanisms underlying the progression of PCa to NEPC are still largely unclear, and new drug targets are desperately needed. NEPC is highly vascularized (angiogenic) and characterized by high expression of neuroendocrine markers. However, direct molecular links connecting angiogenesis and neuroendocrine differentiation are elusive.

Since epigenetic regulation has been implicated in NEPC progression, we examined expression patterns of 147 epigenetic …


Plant Homeodomain Finger Protein 20 (Phf20) And Its Homolog Phf20 Like 1 (Phf20l1) Define Two Distinct Non-Specific Lethal (Nsl) Complexes, Hieu Van, Hieu T. Van May 2022

Plant Homeodomain Finger Protein 20 (Phf20) And Its Homolog Phf20 Like 1 (Phf20l1) Define Two Distinct Non-Specific Lethal (Nsl) Complexes, Hieu Van, Hieu T. Van

Dissertations & Theses (Open Access)

Plant Homeodomain Finger Protein 20 (PHF20) and its homolog PHF20 Like 1 (PHF20L1) are known subunits of the Non-Specific Lethal (NSL) complex, which acetylates lysine residues on histone H4 and regulates gene expression. The current model assumes that PHF20 and PHF20L1 are present together in the NSL complex, although it has never been tested. Performing extensive biochemical analysis, we observed that PHF20 and PHF20L1 were exclusively and independently associated with the NSL complex. Our protein domain analysis showed that the C-termini of PHF20 and PHF20L1 are crucial for their interactions with the respective complexes. Furthermore, enrichment sites of PHF20 and …


Novel Regulators Of Cellular Secretion Alter The Tumor Microenvironment To Drive Metastasis, Rakhee Bajaj May 2022

Novel Regulators Of Cellular Secretion Alter The Tumor Microenvironment To Drive Metastasis, Rakhee Bajaj

Dissertations & Theses (Open Access)

Lung cancer is a highly aggressive disease responsible for ~25% of all cancer-related deaths, due in part to its proclivity to metastasize. Treating metastasis holds potential for improving patient survival but requires a deeper investigation into the underlying mechanisms. Some of these processes that can regulate metastasis are: (1) Oncogenic targets of epithelial micro-RNAs (miRNAs) are epigenetically de-repressed upon loss of the miRNAs during epithelial-to-mesenchymal transition (EMT) and in cancer. EMT confers plasticity and fitness to cancer cells promoting their survival through the metastatic cascade. This cascade and EMT are initiated by loss of the miRNA200 family (miR-200) and the …


Tissue-Specific Matrix Control Of Cell Cohesion And Migration Signaling Complexes, Tristen Tellman May 2022

Tissue-Specific Matrix Control Of Cell Cohesion And Migration Signaling Complexes, Tristen Tellman

Dissertations & Theses (Open Access)

The extracellular matrix (ECM) is a complex, interconnected network of three major constituents: collagens, glycoproteins, and proteoglycans, along with their enzyme modifiers. Within this network and beyond the structural role, each ECM molecule contributes a context-specific signal that influences cellular fate and behavior. Among these behaviors, cellular migration provides an essential function in developing tissues, wound healing, and cancer cell metastasis. Using two glandular organs, the normal salivary gland and the cancerous prostate, this dissertation describes the tissue-specific composition of two ECM signaling complexes (type I hemidesmosomes and the perlecan-semaphorin 3A-plexin A1-neuropilin-1 (PSPN) complex) and translates this knowledge into viable …


An Investigation Of Epigenetic Mechanisms Driving The Biology Of Head And Neck Squamous Cell Carcinoma, Scot Carson Callahan May 2022

An Investigation Of Epigenetic Mechanisms Driving The Biology Of Head And Neck Squamous Cell Carcinoma, Scot Carson Callahan

Dissertations & Theses (Open Access)

Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer worldwide and is associated with significant morbidity and mortality. To date, the majority of work in the field has focused on genomic alterations such as mutations and copy number alterations. However, the clinical success of targeted therapies that exploit known genomic alterations, such as EGFR mutations, has remained mixed. Over the past decade, the importance of epigenetic regulators has come to the forefront, with the realization that many of these genes are mutated in cancer. Despite this realization, the role of epigenetics in regulating tumorigenesis, progression and …


Toward A Topology-Based Therapeutic Design Of Membrane Proteins: Validation Of Napi2b Topology In Live Ovarian Cancer Cells, Leisan Bulatova, Daria Savenkova, Alsina Nurgalieva, Daria Reshetnikova, Arina Timonina, Vera Skripova, Mikhail Bogdanov, Ramziya Kiyamova Jan 2022

Toward A Topology-Based Therapeutic Design Of Membrane Proteins: Validation Of Napi2b Topology In Live Ovarian Cancer Cells, Leisan Bulatova, Daria Savenkova, Alsina Nurgalieva, Daria Reshetnikova, Arina Timonina, Vera Skripova, Mikhail Bogdanov, Ramziya Kiyamova

Faculty and Staff Publications

NaPi2b is a sodium-dependent phosphate transporter that belongs to the SLC34 family of transporters which is mainly responsible for phosphate homeostasis in humans. Although NaPi2b is widely expressed in normal tissues, its overexpression has been demonstrated in ovarian, lung, and other cancers. A valuable set of antibodies, including L2 (20/3) and MX35, and its humanized versions react strongly with an antigen on the surface of ovarian and other carcinoma cells. Although the topology of NaPi2b was predicted


Modulation Of The Receptor Gating Mechanism And Allosteric Communication In Ionotropic Glutamate Receptors, Nabina Paudyal, Nabina Paudyal Dec 2021

Modulation Of The Receptor Gating Mechanism And Allosteric Communication In Ionotropic Glutamate Receptors, Nabina Paudyal, Nabina Paudyal

Dissertations & Theses (Open Access)

Ionotropic glutamate receptors (iGluRs) found in mammalian brain are primarily known to mediate excitatory synaptic transmission crucial for learning and memory formation. The family of iGluRs consists of AMPA receptors, NMDA receptors and kainate receptors with each member having distinct physiological role. In the recent years, significant progress has been made in understanding the biophysical, and functional properties of iGluRs. The development of Cryo-EM and X-Ray crystallography techniques have further facilitated in the structural understanding of these receptors. However, the multidomain nature, large size of the protein, complex gating mechanism and inadequate knowledge regarding the conformational dynamics of the receptors …


Deciphering The Role Of Hsp110 Chaperones In Diseases Of Protein Misfolding, Unekwu M. Yakubu Dec 2021

Deciphering The Role Of Hsp110 Chaperones In Diseases Of Protein Misfolding, Unekwu M. Yakubu

Dissertations & Theses (Open Access)

Molecular chaperones maintain protein homeostasis (proteostasis) by ensuring the proper folding of polypeptides. Loss of proteostasis has been linked to the onset of numerous neurodegenerative disorders including Alzheimer’s, Parkinson’s, and Huntington’s disease. Hsp110 is a member of the Hsp70 class of molecular chaperones and acts as a nucleotide exchange factor (NEF) for Hsp70, the preeminent Hsp70-family protein folding chaperone. Hsp110 promotes rapid cycling of ADP for ATP, allowing Hsp70 to properly fold nascent or unfolded polypeptides in iterative cycles. In addition to its NEF activity, Hsp110 possesses an Hsp70-like substrate binding domain (SBD) whose biological roles are undefined. Previous work …


Investigating Therapeutic Strategies To Target Metabolic Vulnerabilities Of Nsclc Tumors With Mutant Keap1 Gene, Pranavi Koppula Dec 2021

Investigating Therapeutic Strategies To Target Metabolic Vulnerabilities Of Nsclc Tumors With Mutant Keap1 Gene, Pranavi Koppula

Dissertations & Theses (Open Access)

The metabolic vulnerability of cancers has long been envisaged as an attractive window to develop novel therapeutic strategies. Metabolic flexibility at the cellular level encompasses the efficient rerouting of anabolic and catabolic pathways in response to varying environmental stimuli to maintain cellular homeostasis and sustain proliferation. The primary objective of this study is to identify metabolic vulnerabilities bestowed by KEAP1/NRF2 signaling axis through SLC7A11. SLC7A11 is a transcriptional target of NRF2, an essential regulator of cellular anti-oxidant response. Under unstressed basal conditions, NRF2 interacts with KEAP1, a tumor suppressor gene and a substrate adaptor protein of the Cullin3-dependent ubiquitin ligase …


Understanding The Role Of Arglu1 In Interferon Signaling Activation In Breast Cancer, Phuoc Nguyen Aug 2021

Understanding The Role Of Arglu1 In Interferon Signaling Activation In Breast Cancer, Phuoc Nguyen

Dissertations & Theses (Open Access)

In the U.S., the highest number of new cancer cases belongs to breast cancer in women, and this cancer also bears the second-highest death rate in women. Despite significant progress in breast cancer treatment that has been made in the past several decades, innovative and efficient therapies are still needed to eradicate this deadly disease. Novel cancer immunotherapy with immune checkpoint blockade (ICB) could induce long-lasting responses and improve survival in hard-to-treat malignancies. Regrettably, only a fraction of breast cancer patients respond to this highly promising strategy. To improving ICB therapy in breast cancer treatment, IFN signaling induction is a …


Npsd4: A New Player In Sumo-Dependent Dna Repair, Erin Atkinson Aug 2021

Npsd4: A New Player In Sumo-Dependent Dna Repair, Erin Atkinson

Dissertations & Theses (Open Access)

The human genome is under constant threat from sources of damage and stress. Improper resolution of DNA damage lesions can lead to mutations, oncogene activation, and genomic instability. Difficult-to-replicate-loci present barriers to DNA replication that, when not properly resolved, lead to replication fork stalling and collapse and genomic instability.

DNA damage and replication stress trigger signaling cascades potentiated by multiple types of post-translational modifications, including SUMOylation. Through proteomic analysis of proteins involved in SUMOylation following DNA damage, our lab identified an uncharacterized protein that we named New Player in SUMO-dependent DNA damage repair 4 (NPSD4). Through an additional proteomic screen, …


Discovery Of Novel Ubiquitin- And Methylation-Dependent Interactions Using Protein Domain Microarrays, Jianji Chen May 2021

Discovery Of Novel Ubiquitin- And Methylation-Dependent Interactions Using Protein Domain Microarrays, Jianji Chen

Dissertations & Theses (Open Access)

Post-translational modifications (PTMs) drive signal transduction by interacting with "reader" proteins. Protein domain microarray is a high throughput platform to identify novel readers for PTMs. In this dissertation, I applied two protein domain microarrays identifying novel readers for histone H2Aub1 and H2Bub1, and H3TM K4me3. Ubiquitinations of histone H2A at K119 (H2Aub1) and histone H2B at K120 (H2Bub1) function in distinct transcription regulation and DNA damage repair pathways, likely mediated by specific "reader" proteins. There are only two H2Aub1-specific readers identified and no known H2Bub1-specific readers. Using a ubiquitin-binding domain microarray, I discovered the phospholipase A2-activating protein (PLAA) PFU domain …


P53 Drives A Transcriptional Program That Elicits A Non-Cell-Autonomous Response And Alters Cell State In Vivo, Sydney Moyer Dec 2020

P53 Drives A Transcriptional Program That Elicits A Non-Cell-Autonomous Response And Alters Cell State In Vivo, Sydney Moyer

Dissertations & Theses (Open Access)

Cell stress and DNA damage activate the tumor suppressor p53, triggering transcriptional activation of a myriad of target genes. The molecular, morphological, and physiological consequences of this activation remain poorly understood in vivo. We activated a p53 transcriptional program in mice by deletion of Mdm2, a gene which encodes the major p53 inhibitor. By overlaying tissue-specific RNA-sequencing data from pancreas, small intestine, ovary, kidney, and heart with existing p53 ChIP-sequencing, we identified a large repertoire of tissue-specific p53 genes and a common p53 transcriptional signature of seven genes which included Mdm2 but not p21. Global p53 activation …


A Context-Forward In Vivo Functional Genomics Platform For Target Discovery And Establishing Vulnerability Context In Pancreatic Cancer, Johnathon Rose, Johnathon Lynn Rose Dec 2020

A Context-Forward In Vivo Functional Genomics Platform For Target Discovery And Establishing Vulnerability Context In Pancreatic Cancer, Johnathon Rose, Johnathon Lynn Rose

Dissertations & Theses (Open Access)

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a very poor patient prognosis (5-year survival of ≤ 7%). While transcriptional profiling has aided in the classification of this disease into at least two broader subtypes, this alone has so far been insufficient to inform on more nuanced patterns of oncogenic dependency. We hypothesized that a more comprehensive and granular characterization of PDAC disease diversity is required to establish relevant context for targeted therapy. To this end, we sought to establish an integrated platform to: i) more comprehensively characterize differential oncogenic signaling across our tumor models, and ii) establish …


Calcium Dyshomeostasis In Neurodegeneration, Nicholas Emanuel Karagas Dec 2020

Calcium Dyshomeostasis In Neurodegeneration, Nicholas Emanuel Karagas

Dissertations & Theses (Open Access)

Neurodegenerative diseases, despite constituting a major and growing cause of mortality globally, have few effective treatments. In order to develop novel therapeutics to combat neurodegeneration, a better understanding of the molecular mechanisms underlying these diseases is needed. Neurons rely on Ca2+ to mediate many of their unique functions, and aberrant Ca2+ signaling has been broadly implicated in neurodegeneration. The goal of this dissertation is to delineate specific examples of Ca2+ dyshomeostasis that I have uncovered in Drosophila models of neurodegeneration.

I first define the role a neurodegeneration-associated mutation plays in perturbing presynaptic [Ca2+], which is …