Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Preservation Of Biosignature Molecules In Potential Sample Return Container Of The Mars 2020 Mission, Kimberly E. Lykens, Fei Chen Ph.D Aug 2013

Preservation Of Biosignature Molecules In Potential Sample Return Container Of The Mars 2020 Mission, Kimberly E. Lykens, Fei Chen Ph.D

STAR Program Research Presentations

Preservation of Biosignature Molecules in Potential Sample Return Container of the Mars 2020 Mission

Kimberly Lykens1 and Fei Chen2

1Wittenberg University, Springfield, Ohio 45501 2Jet Propulsion Laboratory, Pasadena, California, 91109

One requirement for sustainable life on terrestrial planets includes the presence of organic polymers, compounds that are essential for major biological functions such as replication and catalysis. An identified goal of the Mars mission in the year 2020 is to implement a sample-return to identify and validate signs of life on Mars through the discovery of biosignature molecules in Martian core samples. Martian core samples recovered …


Detection Of Viable Microorganisms Using Propidium Monoazide, Erik J. Mcfarland, Adrian Ponce Dr. Jan 2013

Detection Of Viable Microorganisms Using Propidium Monoazide, Erik J. Mcfarland, Adrian Ponce Dr.

STAR Program Research Presentations

Propidium monoazide (PMA) is a molecular tool used to assess viability of microorganisms. Currently, PMA is thought to discern viability through membrane permeability; PMA enters only membrane compromised cells, irreversibly crosslinks to theirDNAand precipitates theDNAout of solution, preventing it from being amplified during polymerase chain reaction (PCR). Using PMA on a sample of live and dead microorganisms results in only theDNAof living organisms being amplified and identified. Therefore, a comparison ofPCRresults with and without PMA allows one to determine the live fraction and total population, respectively.

Current literature provides conflicting evidence as to the effectiveness of the technique. Our research …


Disocvering Ionic Liquid Resistant Genes, Bree Person, Douglass Higgins, Michael Thelen Jan 2013

Disocvering Ionic Liquid Resistant Genes, Bree Person, Douglass Higgins, Michael Thelen

STAR Program Research Presentations

: Plant biomass is a rich source of sugars that can be converted to biofuels by engineered microbes. However, because the lignocellulose in biomass is insoluble in aqueous conditions and recalcitrant to enzymatic degradation, thermochemical treatment is required to break apart the lignin and cellulose polymers before sugars can be released. The most effective chemicals for doing this are known as ionic liquids, which are salts that are molten at temperatures below 100° C. Although these solvents have many unique properties that are ideal for solubilizing lignocellulose, they have been found to inhibit the growth of bacterial strains used to …