Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Direct Recruitment Of Eif4gi And/Dap5 To The 5' Utr Of A Subset Of Human Mrna Drives Their Cap-Independent Translation, Solomon A. Haizel Feb 2021

Direct Recruitment Of Eif4gi And/Dap5 To The 5' Utr Of A Subset Of Human Mrna Drives Their Cap-Independent Translation, Solomon A. Haizel

Dissertations, Theses, and Capstone Projects

During unfavorable cellular conditions (e.g., tumor hypoxia, viral infection, nutrient deprivation, etc.), the canonical, cap-dependent translation initiation pathway in human cells is suppressed by sequestration of the cap-binding protein, eukaryotic initiation factor(eIF) 4E, by 4E-binding proteins. Circumvention of cap-dependent translation shutdown has been linked to tumor development and cancer progression. The stress-induced repression of cap-dependent translation has also been correlated with increased eIF4GI and its homolog, Death Associated Protein 5 (DAP5) expression levels, suggesting these factors have a role in cap-independent translation. Despite several evidence pointing towards a link upregulation of eIF4GI and /DAP5 levels during stress conditions, and the …


Mechanisms Of Regulation Of Tau Ires Mediated Translation, Niza Nemkul May 2016

Mechanisms Of Regulation Of Tau Ires Mediated Translation, Niza Nemkul

Dissertations & Theses (Open Access)

The translation of most eukaryotic mRNAs occurs in a cap-dependent manner. However, a subset of mRNAs are capable of initiating translation in a cap-independent manner by utilizing sequences in their 5’ UTR called IRES. It was previously shown that the 5’ UTR of the tau mRNA contains an IRES. In this study I show that IRES dependent translation of tau IRES is regulated at multiple levels in order to regulate the expression of the tau protein.

Tau protein is ubiquitously expressed but is concentrated in the brain. In this study, I utilized neural and non-neural cell lines to show that …