Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 24 of 24

Full-Text Articles in Life Sciences

Predictive And Prognostic Biomarkers And Tumor Antigens For Targeted Therapy In Urothelial Carcinoma, Aditya Eturi, Amman Bhasin, Kevin Zarrabi, William Tester Apr 2024

Predictive And Prognostic Biomarkers And Tumor Antigens For Targeted Therapy In Urothelial Carcinoma, Aditya Eturi, Amman Bhasin, Kevin Zarrabi, William Tester

Department of Medical Oncology Faculty Papers

Urothelial carcinoma (UC) is the fourth most prevalent cancer amongst males worldwide. While patients with non-muscle-invasive disease have a favorable prognosis, 25% of UC patients present with locally advanced disease which is associated with a 10-15% 5-year survival rate and poor overall prognosis. Muscle-invasive bladder cancer (MIBC) is associated with about 50% 5 year survival when treated by radical cystectomy or trimodality therapy; stage IV disease is associated with 10-15% 5 year survival. Current therapeutic modalities for MIBC include neoadjuvant chemotherapy, surgery and/or chemoradiation, although patients with relapsed or refractory disease have a poor prognosis. However, the rapid success of …


Discovery Of A Small-Molecule Inhibitor That Traps Polθ On Dna And Synergizes With Parp Inhibitors, William Fried, Mrityunjay Tyagi, Leonid Minakhin, Gurushankar Chandramouly, Taylor Tredinnick, Mercy Ramanjulu, William Auerbacher, Marissa L Calbert, Timur Rusanov, Trung Hoang, Nikita Borisonnik, Robert Betsch, John Krais, Yifan Wang, Umeshkumar Vekariya, John Gordon, George Morton, Tatiana Kent, Tomasz Skorski, Neil Johnson, Wayne Childers, Xiaojiang Chen, Richard Pomerantz Apr 2024

Discovery Of A Small-Molecule Inhibitor That Traps Polθ On Dna And Synergizes With Parp Inhibitors, William Fried, Mrityunjay Tyagi, Leonid Minakhin, Gurushankar Chandramouly, Taylor Tredinnick, Mercy Ramanjulu, William Auerbacher, Marissa L Calbert, Timur Rusanov, Trung Hoang, Nikita Borisonnik, Robert Betsch, John Krais, Yifan Wang, Umeshkumar Vekariya, John Gordon, George Morton, Tatiana Kent, Tomasz Skorski, Neil Johnson, Wayne Childers, Xiaojiang Chen, Richard Pomerantz

Department of Biochemistry and Molecular Biology Faculty Papers

The DNA damage response (DDR) protein DNA Polymerase θ (Polθ) is synthetic lethal with homologous recombination (HR) factors and is therefore a promising drug target in BRCA1/2 mutant cancers. We discover an allosteric Polθ inhibitor (Polθi) class with 4-6 nM IC50 that selectively kills HR-deficient cells and acts synergistically with PARP inhibitors (PARPi) in multiple genetic backgrounds. X-ray crystallography and biochemistry reveal that Polθi selectively inhibits Polθ polymerase (Polθ-pol) in the closed conformation on B-form DNA/DNA via an induced fit mechanism. In contrast, Polθi fails to inhibit Polθ-pol catalytic activity on A-form DNA/RNA in which the enzyme binds in …


Parp2 Promotes Break Induced Replication-Mediated Telomere Fragility In Response To Replication Stress, Daniela Muoio, Natalie Laspata, Rachel L Dannenberg, Caroline Curry, Simone Darkoa-Larbi, Mark Hedglin, Shikhar Uttam, Elise Fouquerel Apr 2024

Parp2 Promotes Break Induced Replication-Mediated Telomere Fragility In Response To Replication Stress, Daniela Muoio, Natalie Laspata, Rachel L Dannenberg, Caroline Curry, Simone Darkoa-Larbi, Mark Hedglin, Shikhar Uttam, Elise Fouquerel

Department of Biochemistry and Molecular Biology Faculty Papers

PARP2 is a DNA-dependent ADP-ribosyl transferase (ARTs) enzyme with Poly(ADP-ribosyl)ation activity that is triggered by DNA breaks. It plays a role in the Base Excision Repair pathway, where it has overlapping functions with PARP1. However, additional roles for PARP2 have emerged in the response of cells to replication stress. In this study, we demonstrate that PARP2 promotes replication stress-induced telomere fragility and prevents telomere loss following chronic induction of oxidative DNA lesions and BLM helicase depletion. Telomere fragility results from the activity of the break-induced replication pathway (BIR). During this process, PARP2 promotes DNA end resection, strand invasion and BIR-dependent …


Blocking The Dimerization Of Polyglutamine-Expanded Androgen Receptor Protects Cells From Dht-Induced Toxicity By Increasing Ar Turnover, Allison Lisberg, Yuhong Liu, Diane E. Merry Mar 2024

Blocking The Dimerization Of Polyglutamine-Expanded Androgen Receptor Protects Cells From Dht-Induced Toxicity By Increasing Ar Turnover, Allison Lisberg, Yuhong Liu, Diane E. Merry

Department of Biochemistry and Molecular Biology Faculty Papers

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular degenerative disease caused by a polyglutamine expansion in the androgen receptor (AR). This mutation causes AR to misfold and aggregate, contributing to toxicity in and degeneration of motor neurons and skeletal muscle. There is currently no effective treatment or cure for this disease. The role of an interdomain interaction between the amino- and carboxyl-termini of AR, termed the N/C interaction, has been previously identified as a component of androgen receptor-induced toxicity in cell and mouse models of SBMA. However, the mechanism by which this interaction contributes to disease pathology is unclear. …


Biomarkers For Managing Neurodegenerative Diseases, Lara Cheslow, Adam E. Snook, Scott A. Waldman Mar 2024

Biomarkers For Managing Neurodegenerative Diseases, Lara Cheslow, Adam E. Snook, Scott A. Waldman

Department of Pharmacology, Physiology, and Cancer Biology Faculty Papers

Neurological disorders are the leading cause of cognitive and physical disability worldwide, affecting 15% of the global population. Due to the demographics of aging, the prevalence of neurological disorders, including neurodegenerative diseases, will double over the next two decades. Unfortunately, while available therapies provide symptomatic relief for cognitive and motor impairment, there is an urgent unmet need to develop disease-modifying therapies that slow the rate of pathological progression. In that context, biomarkers could identify at-risk and prodromal patients, monitor disease progression, track responses to therapy, and parse the causality of molecular events to identify novel targets for further clinical investigation. …


Two Dot1 Enzymes Cooperatively Mediate Efficient Ubiquitin-Independent Histone H3 Lysine 76 Tri-Methylation In Kinetoplastids, Victoria Frisbie, Hideharu Hashimoto, Yixuan Xie, Francisca De Luna Vitorino, Josue Baeza, Tam Nguyen, Zhangerjiao Yuan, Janna Kiselar, Benjamin Garcia, Erik Debler Mar 2024

Two Dot1 Enzymes Cooperatively Mediate Efficient Ubiquitin-Independent Histone H3 Lysine 76 Tri-Methylation In Kinetoplastids, Victoria Frisbie, Hideharu Hashimoto, Yixuan Xie, Francisca De Luna Vitorino, Josue Baeza, Tam Nguyen, Zhangerjiao Yuan, Janna Kiselar, Benjamin Garcia, Erik Debler

Department of Biochemistry and Molecular Biology Faculty Papers

In higher eukaryotes, a single DOT1 histone H3 lysine 79 (H3K79) methyltransferase processively produces H3K79me2/me3 through histone H2B mono-ubiquitin interaction, while the kinetoplastid Trypanosoma brucei di-methyltransferase DOT1A and tri-methyltransferase DOT1B efficiently methylate the homologous H3K76 without H2B mono-ubiquitination. Based on structural and biochemical analyses of DOT1A, we identify key residues in the methyltransferase motifs VI and X for efficient ubiquitin-independent H3K76 methylation in kinetoplastids. Substitution of a basic to an acidic residue within motif VI (Gx6K) is essential to stabilize the DOT1A enzyme-substrate complex, while substitution of the motif X sequence VYGE by CAKS renders a rigid active-site …


Differentially Disrupted Spinal Cord And Muscle Energy Metabolism In Spinal And Bulbar Muscular Atrophy, Danielle Debartolo, Frederick Arnold, Y Liu, Elana Molotsky, Hsin-Yao Tang, Diane Merry Mar 2024

Differentially Disrupted Spinal Cord And Muscle Energy Metabolism In Spinal And Bulbar Muscular Atrophy, Danielle Debartolo, Frederick Arnold, Y Liu, Elana Molotsky, Hsin-Yao Tang, Diane Merry

Department of Biochemistry and Molecular Biology Faculty Papers

Prior studies showed that polyglutamine-expanded androgen receptor (AR) is aberrantly acetylated and that deacetylation of the mutant AR by overexpression of nicotinamide adenine dinucleotide-dependent (NAD+-dependent) sirtuin 1 is protective in cell models of spinal and bulbar muscular atrophy (SBMA). Based on these observations and reduced NAD+ in muscles of SBMA mouse models, we tested the therapeutic potential of NAD+ restoration in vivo by treating postsymptomatic transgenic SBMA mice with the NAD+ precursor nicotinamide riboside (NR). NR supplementation failed to alter disease progression and had no effect on increasing NAD+ or ATP content in muscle, despite producing a modest increase of …


Tail-Tape-Fused Virion And Non-Virion Rna Polymerases Of A Thermophilic Virus With An Extremely Long Tail, Anastasiia Chaban, Leonid Minakhin, Ekaterina Goldobina, Brain Bae, Yue Hao, Sergei Borukhov, Leena Putzeys, Maarten Boon, Florian Kabinger, Rob Lavigne, Kira Makarova, Eugene V Koonin, Satish Nair, Shunsuke Tagami, Konstantin Severinov, Maria Sokolova Jan 2024

Tail-Tape-Fused Virion And Non-Virion Rna Polymerases Of A Thermophilic Virus With An Extremely Long Tail, Anastasiia Chaban, Leonid Minakhin, Ekaterina Goldobina, Brain Bae, Yue Hao, Sergei Borukhov, Leena Putzeys, Maarten Boon, Florian Kabinger, Rob Lavigne, Kira Makarova, Eugene V Koonin, Satish Nair, Shunsuke Tagami, Konstantin Severinov, Maria Sokolova

Department of Biochemistry and Molecular Biology Faculty Papers

Thermus thermophilus bacteriophage P23-45 encodes a giant 5,002-residue tail tape measure protein (TMP) that defines the length of its extraordinarily long tail. Here, we show that the N-terminal portion of P23-45 TMP is an unusual RNA polymerase (RNAP) homologous to cellular RNAPs. The TMP-fused virion RNAP transcribes pre-early phage genes, including a gene that encodes another, non-virion RNAP, that transcribes early and some middle phage genes. We report the crystal structures of both P23-45 RNAPs. The non-virion RNAP has a crab-claw-like architecture. By contrast, the virion RNAP adopts a unique flat structure without a clamp. Structure and sequence comparisons of …


Structural Basis For Dna Proofreading, Gina Buchel, Ashok Nayak, Karl Herbine, Azadeh Sarfallah, Viktoriia Sokolova, Angelica Zamudio-Ochoa, Dmitry Temiakov Dec 2023

Structural Basis For Dna Proofreading, Gina Buchel, Ashok Nayak, Karl Herbine, Azadeh Sarfallah, Viktoriia Sokolova, Angelica Zamudio-Ochoa, Dmitry Temiakov

Department of Biochemistry and Molecular Biology Faculty Papers

DNA polymerase (DNAP) can correct errors in DNA during replication by proofreading, a process critical for cell viability. However, the mechanism by which an erroneously incorporated base translocates from the polymerase to the exonuclease site and the corrected DNA terminus returns has remained elusive. Here, we present an ensemble of nine high-resolution structures representing human mitochondrial DNA polymerase Gamma, Polγ, captured during consecutive proofreading steps. The structures reveal key events, including mismatched base recognition, its dissociation from the polymerase site, forward translocation of DNAP, alterations in DNA trajectory, repositioning and refolding of elements for primer separation, DNAP backtracking, and displacement …


Novel Treatments For Pxe: Targeting The Systemic And Local Drivers Of Ectopic Calcification, Ida Joely Jacobs, Qiaoli Li Oct 2023

Novel Treatments For Pxe: Targeting The Systemic And Local Drivers Of Ectopic Calcification, Ida Joely Jacobs, Qiaoli Li

Department of Biochemistry and Molecular Biology Faculty Papers

Pseudoxanthoma elasticum (PXE) is a heritable multisystem ectopic calcification disorder. The gene responsible for PXE, ABCC6, encodes ABCC6, a hepatic efflux transporter regulating extracellular inorganic pyrophosphate (PPi), a potent endogenous calcification inhibitor. Recent studies demonstrated that in addition to the deficiency of plasma PPi, the activated DDR/PARP signaling in calcified tissues provides an additional possible mechanism of ectopic calcification in PXE. This study examined the effects of etidronate (ETD), a stable PPi analog, and its combination with minocycline (Mino), a potent inhibitor of DDR/PARP, on ectopic calcification in an Abcc6-/- mouse model of PXE. Abcc6-/- mice, at 4 weeks of …


Loss Of Pml Nuclear Bodies In Familial Amyotrophic Lateral Sclerosis-Frontotemporal Dementia, Francesco Antoniani, Marco Cimino, Laura Mediani, Jonathan Vinet, Enza M. Verde, Valentina Secco, Alfred Yamoah, Priyanka Tripathi, Eleonora Aronica, Maria Elena Cicardi, Davide Trotti, Jared Sterneckert, Anand Goswami, Serena Carra Jul 2023

Loss Of Pml Nuclear Bodies In Familial Amyotrophic Lateral Sclerosis-Frontotemporal Dementia, Francesco Antoniani, Marco Cimino, Laura Mediani, Jonathan Vinet, Enza M. Verde, Valentina Secco, Alfred Yamoah, Priyanka Tripathi, Eleonora Aronica, Maria Elena Cicardi, Davide Trotti, Jared Sterneckert, Anand Goswami, Serena Carra

Farber Institute for Neuroscience Faculty Papers

Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurodegenerative disorders that share genetic causes and pathogenic mechanisms. The critical genetic players of ALS and FTD are the TARDBP, FUS and C9orf72 genes, whose protein products, TDP-43, FUS and the C9orf72-dipeptide repeat proteins, accumulate in form of cytoplasmic inclusions. The majority of the studies focus on the understanding of how cells control TDP-43 and FUS aggregation in the cytoplasm, overlooking how dysfunctions occurring at the nuclear level may influence the maintenance of protein solubility outside of the nucleus. However, protein quality control (PQC) systems that maintain protein homeostasis comprise …


High-Resolution Cryo-Em Structure Of The Pseudomonas Bacteriophage E217, Fenglin Li, Chun-Feng Hou, Ravi K. Lokareddy, Ruoyu Yang, Francesca Forti, Federica Briani, Gino Cingolani Jul 2023

High-Resolution Cryo-Em Structure Of The Pseudomonas Bacteriophage E217, Fenglin Li, Chun-Feng Hou, Ravi K. Lokareddy, Ruoyu Yang, Francesca Forti, Federica Briani, Gino Cingolani

Department of Biochemistry and Molecular Biology Faculty Papers

E217 is a Pseudomonas phage used in an experimental cocktail to eradicate cystic fibrosis-associated Pseudomonas aeruginosa. Here, we describe the structure of the whole E217 virion before and after DNA ejection at 3.1 Å and 4.5 Å resolution, respectively, determined using cryogenic electron microscopy (cryo-EM). We identify and build de novo structures for 19 unique E217 gene products, resolve the tail genome-ejection machine in both extended and contracted states, and decipher the complete architecture of the baseplate formed by 66 polypeptide chains. We also determine that E217 recognizes the host O-antigen as a receptor, and we resolve the N-terminal portion …


Fibrosis-The Tale Of H3k27 Histone Methyltransferases And Demethylases, Morgan D. Basta, Svetlana Petruk, Alexander Mazo, Janice L. Walker Jul 2023

Fibrosis-The Tale Of H3k27 Histone Methyltransferases And Demethylases, Morgan D. Basta, Svetlana Petruk, Alexander Mazo, Janice L. Walker

Department of Biochemistry and Molecular Biology Faculty Papers

Fibrosis, or excessive scarring, is characterized by the emergence of alpha-smooth muscle actin (αSMA)-expressing myofibroblasts and the excessive accumulation of fibrotic extracellular matrix (ECM). Currently, there is a lack of effective treatment options for fibrosis, highlighting an unmet need to identify new therapeutic targets. The acquisition of a fibrotic phenotype is associated with changes in chromatin structure, a key determinant of gene transcription activation and repression. The major repressive histone mark, H3K27me3, has been linked to dynamic changes in gene expression in fibrosis through alterations in chromatin structure. H3K27-specific homologous histone methylase (HMT) enzymes, Enhancer of zeste 1 and 2 …


Molecular Mechanisms Protecting Centromeres From Self-Sabotage And Implications For Cancer Therapy, Rim Nassar, Lily Thompson, Elise Fouquerel Jun 2023

Molecular Mechanisms Protecting Centromeres From Self-Sabotage And Implications For Cancer Therapy, Rim Nassar, Lily Thompson, Elise Fouquerel

Student Papers, Posters & Projects

Centromeres play a crucial role in DNA segregation by mediating the cohesion and separation of sister chromatids during cell division. Centromere dysfunction, breakage or compromised centromeric integrity can generate aneuploidies and chromosomal instability, which are cellular features associated with cancer initiation and progression. Maintaining centromere integrity is thus essential for genome stability. However, the centromere itself is prone to DNA breaks, likely due to its intrinsically fragile nature. Centromeres are complex genomic loci that are composed of highly repetitive DNA sequences and secondary structures and require the recruitment and homeostasis of a centromere-associated protein network. The molecular mechanisms engaged to …


A Label-Free Assay For Aminoacylation Of Trna, Howard Gamper, Ya-Ming Hou Oct 2020

A Label-Free Assay For Aminoacylation Of Trna, Howard Gamper, Ya-Ming Hou

Department of Biochemistry and Molecular Biology Faculty Papers

Aminoacylation of tRNA generates an aminoacyl-tRNA (aa-tRNA) that is active for protein synthesis on the ribosome. Quantification of aminoacylation of tRNA is critical to understand the mechanism of specificity and the flux of the aa-tRNA into the protein synthesis machinery, which determines the rate of cell growth. Traditional assays for the quantification of tRNA aminoacylation involve radioactivity, either with a radioactive amino acid or with a [3'-32P]-labeled tRNA. We describe here a label-free assay that monitors aminoacylation by biotinylation-streptavidin (SA) conjugation to the α-amine or the α-imine of the aminoacyl group on the aa-tRNA. The conjugated aa-tRNA product is readily …


Profiling The Circulating Mrna Transcriptome In Human Liver Disease, Aejaz Sayeed, Brielle E Dalvano, David E Kaplan, Usha Viswanathan, John Kulp, Alhaji H Janneh, Lu-Yu Hwang, Adam Ertel, Cataldo Doria, Timothy Block Jun 2020

Profiling The Circulating Mrna Transcriptome In Human Liver Disease, Aejaz Sayeed, Brielle E Dalvano, David E Kaplan, Usha Viswanathan, John Kulp, Alhaji H Janneh, Lu-Yu Hwang, Adam Ertel, Cataldo Doria, Timothy Block

Department of Cancer Biology Faculty Papers

The human circulation contains cell-free DNA and non-coding microRNA (miRNA). Less is known about the presence of messenger RNA (mRNA). This report profiles the human circulating mRNA transcriptome in people with liver cirrhosis (LC) and hepatocellular carcinoma (HCC) to determine whether mRNA analytes can be used as biomarkers of liver disease. Using RNAseq and RT-qPCR, we investigate circulating mRNA in plasma from HCC and LC patients and demonstrate detection of transcripts representing more than 19,000 different protein coding genes. Remarkably, the circulating mRNA expression levels were similar from person to person over the 21 individuals whose samples were analyzed by …


Methylation Of Salmonella Typhimurium Flagella Promotes Bacterial Adhesion And Host Cell Invasion, Julia A Horstmann, Michele Lunelli, Hélène Cazzola, Johannes Heidemann, Caroline Kühne, Pascal Steffen, Sandra Szefs, Claire Rossi, Ravi K Lokareddy, Chu Wang, Laurine Lemaire, Kelly T Hughes, Charlotte Uetrecht, Hartmut Schlüter, Guntram A Grassl, Theresia E B Stradal, Yannick Rossez, Michael Kolbe, Marc Erhardt Apr 2020

Methylation Of Salmonella Typhimurium Flagella Promotes Bacterial Adhesion And Host Cell Invasion, Julia A Horstmann, Michele Lunelli, Hélène Cazzola, Johannes Heidemann, Caroline Kühne, Pascal Steffen, Sandra Szefs, Claire Rossi, Ravi K Lokareddy, Chu Wang, Laurine Lemaire, Kelly T Hughes, Charlotte Uetrecht, Hartmut Schlüter, Guntram A Grassl, Theresia E B Stradal, Yannick Rossez, Michael Kolbe, Marc Erhardt

Department of Biochemistry and Molecular Biology Faculty Papers

The long external filament of bacterial flagella is composed of several thousand copies of a single protein, flagellin. Here, we explore the role played by lysine methylation of flagellin in Salmonella, which requires the methylase FliB. We show that both flagellins of Salmonella enterica serovar Typhimurium, FliC and FljB, are methylated at surface-exposed lysine residues by FliB. A Salmonella Typhimurium mutant deficient in flagellin methylation is outcompeted for gut colonization in a gastroenteritis mouse model, and methylation of flagellin promotes bacterial invasion of epithelial cells in vitro. Lysine methylation increases the surface hydrophobicity of flagellin, and enhances flagella-dependent adhesion of …


Methylation Of Salmonella Typhimurium Flagella Promotes Bacterial Adhesion And Host Cell Invasion., Julia A Horstmann, Michele Lunelli, Hélène Cazzola, Johannes Heidemann, Caroline Kühne, Pascal Steffen, Sandra Szefs, Claire Rossi, Ravi K Lokareddy, Chu Wang, Laurine Lemaire, Kelly T Hughes, Charlotte Uetrecht, Hartmut Schlüter, Guntram A Grassl, Theresia E B Stradal, Yannick Rossez, Michael Kolbe, Marc Erhardt Apr 2020

Methylation Of Salmonella Typhimurium Flagella Promotes Bacterial Adhesion And Host Cell Invasion., Julia A Horstmann, Michele Lunelli, Hélène Cazzola, Johannes Heidemann, Caroline Kühne, Pascal Steffen, Sandra Szefs, Claire Rossi, Ravi K Lokareddy, Chu Wang, Laurine Lemaire, Kelly T Hughes, Charlotte Uetrecht, Hartmut Schlüter, Guntram A Grassl, Theresia E B Stradal, Yannick Rossez, Michael Kolbe, Marc Erhardt

Department of Biochemistry and Molecular Biology Faculty Papers

The long external filament of bacterial flagella is composed of several thousand copies of a single protein, flagellin. Here, we explore the role played by lysine methylation of flagellin in Salmonella, which requires the methylase FliB. We show that both flagellins of Salmonella enterica serovar Typhimurium, FliC and FljB, are methylated at surface-exposed lysine residues by FliB. A Salmonella Typhimurium mutant deficient in flagellin methylation is outcompeted for gut colonization in a gastroenteritis mouse model, and methylation of flagellin promotes bacterial invasion of epithelial cells in vitro. Lysine methylation increases the surface hydrophobicity of flagellin, and enhances flagella-dependent adhesion of …


How To Untie A Protein Knot., Sitao Yin, Brittiny Dhital, Ya-Ming Hou Aug 2019

How To Untie A Protein Knot., Sitao Yin, Brittiny Dhital, Ya-Ming Hou

Department of Biochemistry and Molecular Biology Faculty Papers

The origin of protein backbone threading through a topological knot remains elusive. To understand the evolutionary origin of protein knots, in this issue of StructureKo et al. (2019) used circular permutation to untie a knotted protein. They showed that a domain-swapped dimer releases the knot and the associated high-energy state for substrate binding.


Using Competition Assays To Quantitatively Model Cooperative Binding By Transcription Factors And Other Ligands., Jacob Peacock, James B Jaynes Nov 2017

Using Competition Assays To Quantitatively Model Cooperative Binding By Transcription Factors And Other Ligands., Jacob Peacock, James B Jaynes

Department of Biochemistry and Molecular Biology Faculty Papers

BACKGROUND: The affinities of DNA binding proteins for target sites can be used to model the regulation of gene expression. These proteins can bind to DNA cooperatively, strongly impacting their affinity and specificity. However, current methods for measuring cooperativity do not provide the means to accurately predict binding behavior over a wide range of concentrations.

METHODS: We use standard computational and mathematical methods, and develop novel methods as described in Results.

RESULTS: We explore some complexities of cooperative binding, and develop an improved method for relating in vitro measurements to in vivo function, based on ternary complex formation. We derive …


Decorin As A Multivalent Therapeutic Agent Against Cancer., Thomas Neill, Liliana Schaefer, Renato V. Iozzo Feb 2016

Decorin As A Multivalent Therapeutic Agent Against Cancer., Thomas Neill, Liliana Schaefer, Renato V. Iozzo

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Decorin is a prototypical small leucine-rich proteoglycan that epitomizes the multifunctional nature of this critical gene family. Soluble decorin engages multiple receptor tyrosine kinases within the target-rich environment of the tumor stroma and tumor parenchyma. Upon receptor binding, decorin initiates signaling pathways within endothelial cells downstream of VEGFR2 that ultimately culminate in a Peg3/Beclin 1/LC3-dependent autophagic program. Concomitant with autophagic induction, decorin blunts capillary morphogenesis and endothelial cell migration, thereby significantly compromising tumor angiogenesis. In parallel within the tumor proper, decorin binds multiple RTKs with high affinity, including Met, for a multitude of oncosuppressive functions including growth inhibition, tumor cell …


Mechanism Of N-Methylation By The Trna M1g37 Methyltransferase Trm5., Thomas Christian, Georges Lahoud, Cuiping Liu, Katherine Hoffmann, John J Perona, Ya-Ming Hou Dec 2010

Mechanism Of N-Methylation By The Trna M1g37 Methyltransferase Trm5., Thomas Christian, Georges Lahoud, Cuiping Liu, Katherine Hoffmann, John J Perona, Ya-Ming Hou

Department of Biochemistry and Molecular Biology Faculty Papers

Trm5 is a eukaryal and archaeal tRNA methyltransferase that catalyzes methyl transfer from S-adenosylmethionine (AdoMet) to the N(1) position of G37 directly 3' to the anticodon. While the biological role of m(1)G37 in enhancing translational fidelity is well established, the catalytic mechanism of Trm5 has remained obscure. To address the mechanism of Trm5 and more broadly the mechanism of N-methylation to nucleobases, we examined the pH-activity profile of an archaeal Trm5 enzyme, and performed structure-guided mutational analysis. The data reveal a marked dependence of enzyme-catalyzed methyl transfer on hydrogen ion equilibria: the single-turnover rate constant for methylation increases by one …


Characterizing The Dynamics And Functional Role Of Site-Specific Phosphorylation Of G Protein-Coupled Receptors, John M. Busillo Jan 2008

Characterizing The Dynamics And Functional Role Of Site-Specific Phosphorylation Of G Protein-Coupled Receptors, John M. Busillo

Full-Text Theses & Dissertations

Phosphorylation of G protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) and the subsequent recruitment of arrestin is a well-established paradigm that initiates the process known as desensitization. However, an emerging theme in GPCR regulation is the possibility of differential regulation dictated by the phosphorylation pattern elicited by the different members of the GRK family. Therefore, we have used small interfering RNA-mediated knock down of the GRKs and arrestins in an attempt to better understand how phosphorylation regulates the activity and signaling of the M3 muscarinic acetylcholine receptor (M3 mAChR) and CXCR4, two receptors endogenously expressed in HEK293 cells.

Using a …


Role Of Immunodominant T Cell Responses To Minor Histocompatibility Antigens In A Mouse Model Of Graft-Versus-Host Disease, Marc Adam Berger, B.S. Thomas Jefferson University Jan 1996

Role Of Immunodominant T Cell Responses To Minor Histocompatibility Antigens In A Mouse Model Of Graft-Versus-Host Disease, Marc Adam Berger, B.S. Thomas Jefferson University

Full-Text Theses & Dissertations

Graft-versus-host-disease (GVHD) is a major complication of major histocompatibility complex (MHC) matched bone marrow transplantation. GVHD is the result of an immune-mediated attack, by T lymphocytes derived from donor bone marrow, against recipient tissues expressing minor histocompatibility antigen (miHA) differences. There is a lack of knowledge concerning the nature of in vivo immune responses to miHA during GVHD. C57BL/6By (B6/By) and BALB.B mouse strains both express the H-2B MHC haplotype but differ at more than 40 miHA loci. Both the in vitro and in vivo T cell responses to miHA expressed by BALB.B and CXB recombinant inbred (RI) strains of …