Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Microbiology

Pseudomonas aeruginosa

2011

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

2-Heptyl-4-Quinolone, A Precursor Of The Pseudomonas Quinolone Signal Molecule, Modulates Swarming Motility In Pseudomonas Aeruginosa, Dae-Gon Ha, Judith H. Merritt, Thomas H. Hampton, James T. Hodgkinson, Matej Janecek, David R. Spring, Martin Welch, George A. O'Toole Sep 2011

2-Heptyl-4-Quinolone, A Precursor Of The Pseudomonas Quinolone Signal Molecule, Modulates Swarming Motility In Pseudomonas Aeruginosa, Dae-Gon Ha, Judith H. Merritt, Thomas H. Hampton, James T. Hodgkinson, Matej Janecek, David R. Spring, Martin Welch, George A. O'Toole

Dartmouth Scholarship

Pseudomonas aeruginosa is an opportunistic pathogen capable of group behaviors, including biofilm formation and swarming motility. These group behaviors are regulated by both the intracellular signaling molecule c-di-GMP and acylhomoserine lactone quorum-sensing systems. Here, we show that the Pseudomonas quinolone signal (PQS) system also contributes to the regulation of swarming motility. Specifically, our data indicate that 2-heptyl-4-quinolone (HHQ), a precursor of PQS, likely induces the production of the phenazine-1-carboxylic acid (PCA), which in turn acts via an as-yet-unknown downstream mechanism to repress swarming motility. We show that this HHQ- and PCA-dependent swarming repression is apparently independent of changes in global …


Roles Of Three Transporters, Cbcxwv, Bett1, And Bett3, In Pseudomonas Aeruginosa Choline Uptake For Catabolism, Adel A. Malek, Chiliang Chen, Matthew J. Wargo, Gwyn A. Beattie, Deborah A. Hogan Apr 2011

Roles Of Three Transporters, Cbcxwv, Bett1, And Bett3, In Pseudomonas Aeruginosa Choline Uptake For Catabolism, Adel A. Malek, Chiliang Chen, Matthew J. Wargo, Gwyn A. Beattie, Deborah A. Hogan

Dartmouth Scholarship

Pseudomonas aeruginosa uses the quaternary amine choline as a carbon source, osmoprotectant, and macromolecular precursor. The importance of choline in P. aeruginosa physiology is highlighted by the presence of multiple known and putative choline transporters encoded within its genome. This report describes the relative roles of three choline transporters, the ABC transporter CbcXWV and two symporters, BetT1 and BetT3, in P. aeruginosa growth on choline under osmotic conditions that are physiologically relevant to eukaryotic hosts. The increased lag phases exhibited by the ΔbetT1 and ΔbetT1 ΔbetT3 mutants relative to the wild type upon transfer to medium with …


Section Abstracts: Biology With Microbiology And Molecular Biology Apr 2011

Section Abstracts: Biology With Microbiology And Molecular Biology

Virginia Journal of Science

Abstracts of the Biology with Microbiology and Molecular Biology Section for the 89th Annual Meeting of the Virginia Academy of Science, May 25-27, 2011, University of Richmond, Richmond VA.


Non-Identity-Mediated Crispr-Bacteriophage Interaction Mediated Via The Csy And Cas3 Proteins, Kyle C. Cady, George A. O'Toole Mar 2011

Non-Identity-Mediated Crispr-Bacteriophage Interaction Mediated Via The Csy And Cas3 Proteins, Kyle C. Cady, George A. O'Toole

Dartmouth Scholarship

Studies of the Escherichia, Neisseria, Thermotoga, and Mycobacteria clustered regularly interspaced short palindromic repeat (CRISPR) subtypes have resulted in a model whereby CRISPRs function as a defense system against bacteriophage infection and conjugative plasmid transfer. In contrast, we previously showed that the Yersinia-subtype CRISPR region of Pseudomonas aeruginosa strain UCBPP-PA14 plays no detectable role in viral immunity but instead is required for bacteriophage DMS3-dependent inhibition of biofilm formation by P. aeruginosa. The goal of this study is to define the components of the Yersinia-subtype CRISPR region required to mediate this bacteriophage-host interaction. We show that the Yersinia-subtype-specific CRISPR-associated (Cas) proteins …