Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Microbiology

Bacteria

2009

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Proteolytic Regulation Of Toxin-Antitoxin Systems By Clppc In Staphylococcus Aureus, Niles P. Donegan, Earl T. Thompson, Zhibiao Fu, Ambrose L. Cheung Dec 2009

Proteolytic Regulation Of Toxin-Antitoxin Systems By Clppc In Staphylococcus Aureus, Niles P. Donegan, Earl T. Thompson, Zhibiao Fu, Ambrose L. Cheung

Dartmouth Scholarship

Bacterial toxin-antitoxin (TA) systems typically consist of a small, labile antitoxin that inactivates a specific longer-lived toxin. In Escherichia coli, such antitoxins are proteolytically regulated by the ATP-dependent proteases Lon and ClpP. Under normal conditions, antitoxin synthesis is sufficient to replace this loss from proteolysis, and the bacterium remains protected from the toxin. However, if TA production is interrupted, antitoxin levels decrease, and the cognate toxin is free to inhibit the specific cellular component, such as mRNA, DnaB, or gyrase. To date, antitoxin degradation has been studied only in E. coli, so it remains unclear whether similar mechanisms of regulation …


Levels Of The Secreted Vibrio Cholerae Attachment Factor Gbpa Are Modulated By Quorum-Sensing-Induced Proteolysis, Brooke A. Jude, Raquel M. Martinez, Karen Skorupski, Ronald K. Taylor Nov 2009

Levels Of The Secreted Vibrio Cholerae Attachment Factor Gbpa Are Modulated By Quorum-Sensing-Induced Proteolysis, Brooke A. Jude, Raquel M. Martinez, Karen Skorupski, Ronald K. Taylor

Dartmouth Scholarship

Vibrio cholerae is the etiologic agent of cholera in humans. Intestinal colonization occurs in a stepwise fashion, initiating with attachment to the small intestinal epithelium. This attachment is followed by expression of the toxin-coregulated pilus, microcolony formation, and cholera toxin (CT) production. We have recently characterized a secreted attachment factor, GlcNAc binding protein A (GbpA), which functions in attachment to environmental chitin sources as well as to intestinal substrates. Studies have been initiated to define the regulatory network involved in GbpA induction. At low cell density, GbpA was detected in the culture supernatant of all wild-type (WT) strains examined. In …


Identification Of The [Fefe]-Hydrogenase Responsible For Hydrogen Generation In Thermoanaerobacterium Saccharolyticum And Demonstration Of Increased Ethanol Yield Via Hydrogenase Knockout, A. Joe Shaw, David A. Hogsett, Lee R. Lynd Oct 2009

Identification Of The [Fefe]-Hydrogenase Responsible For Hydrogen Generation In Thermoanaerobacterium Saccharolyticum And Demonstration Of Increased Ethanol Yield Via Hydrogenase Knockout, A. Joe Shaw, David A. Hogsett, Lee R. Lynd

Dartmouth Scholarship

Three putative hydrogenase enzyme systems in Thermoanaerobacterium saccharolyticum were investigated at the genetic, mRNA, enzymatic, and phenotypic levels. A four-gene operon containing two [FeFe]-hydrogenase genes, provisionally termed hfs (hydrogenase-Fe-S), was found to be the main enzymatic catalyst of hydrogen production. hfsB, perhaps the most interesting gene of the operon, contains an [FeFe]-hydrogenase and a PAS sensory domain and has several conserved homologues among clostridial saccharolytic, cellulolytic, and pathogenic bacteria. A second hydrogenase gene cluster, hyd, exhibited methyl viologen-linked hydrogenase enzymatic activity, but hyd gene knockouts did not influence the hydrogen yield of …


Microbial Nad Metabolism: Lessons From Comparative Genomics, Francesca Gazzaniga, Rebecca Stebbins, Sheila Z. Chang, Mark A. Mcpeek, Charles Brenner Sep 2009

Microbial Nad Metabolism: Lessons From Comparative Genomics, Francesca Gazzaniga, Rebecca Stebbins, Sheila Z. Chang, Mark A. Mcpeek, Charles Brenner

Dartmouth Scholarship

NAD is a coenzyme for redox reactions and a substrate of NAD-consuming enzymes, including ADP-ribose transferases, Sir2-related protein lysine deacetylases, and bacterial DNA ligases. Microorganisms that synthesize NAD from as few as one to as many as five of the six identified biosynthetic precursors have been identified. De novo NAD synthesis from aspartate or tryptophan is neither universal nor strictly aerobic. Salvage NAD synthesis from nicotinamide, nicotinic acid, nicotinamide riboside, and nicotinic acid riboside occurs via modules of different genes. Nicotinamide salvage genes nadV and pncA, found in distinct bacteria, appear to have spread throughout the tree of life …