Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Both Adhe And A Separate Nadph-Dependent Alcohol Dehydrogenase Gene, Adha, Are Necessary For High Ethanol Production In Thermoanaerobacterium Saccharolyticum, Tianyong Zheng, Daniel G. Olson, Sean J. Murphy, Xiongjun Shao, Liang Tian, Lee Lynd Nov 2017

Both Adhe And A Separate Nadph-Dependent Alcohol Dehydrogenase Gene, Adha, Are Necessary For High Ethanol Production In Thermoanaerobacterium Saccharolyticum, Tianyong Zheng, Daniel G. Olson, Sean J. Murphy, Xiongjun Shao, Liang Tian, Lee Lynd

Dartmouth Scholarship

Thermoanaerobacterium saccharolyticum has been engineered to produce ethanol at ∼90% theoretical yield and titer of 70 g/L. Its ethanol-producing ability has drawn attention to its metabolic pathways, which could potentially be transferred to other organisms of interest. Here we report that the iron-containing AdhA is important for ethanol production in the high-ethanol strain of T. saccharolyticum (LL1049). A single-gene deletion of adhA in LL1049 reduced ethanol production by ∼50%, whereas multiple gene deletions of all annotated alcohol dehydrogenases except adhA and adhE did not affect ethanol production. Deletion of adhA in wild-type T. saccharolyticum reduced NADPH-linked ADH activity (acetaldehyde-reducing) by …


The Synthetic Biology Of N2-Fixing Cyanobacteria For Photosynthetic Terpenoid Production, Charles T. Halfmann Jan 2017

The Synthetic Biology Of N2-Fixing Cyanobacteria For Photosynthetic Terpenoid Production, Charles T. Halfmann

Electronic Theses and Dissertations

In the last few decades, concerns over global climate change, energy security, and environmental pollution have been rising. To overcome these challenges, the concept of “-nth generation” biofuels has emerged as a strategy to convert solar radiation into fuels and bulk industrial chemicals for societal use, while decreasing our consumption of nonrenewable energy sources. Nitrogen-fixing cyanobacteria hold a distinct advantage in biofuel production over plants, given their ability to convert sunlight, air (CO2 and N2), and mineralized water to energy-dense carbon molecules, as well as fix atmospheric nitrogen gas into ammonia for metabolism. Engineered cyanobacteria with …