Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Life Sciences

Part 1: Screening Of Thirty-One Medicinal Plant Species Against Herpes Simplex Virus, Acetone And Methanol Extracts From The Root Tissue Of Kalanchoe Pinnata Interferes With Hsv Types 1 And 2 Dna Replication And Early And Late Gene Expression Preventing The Spread Of Hsv In Vitro. Part 2: Professional Development Curriculum: Integrating Molecular Biology And Microbiology Into The Existing Secondary Biology Curricula, Mary Ruth Greer Nov 2009

Part 1: Screening Of Thirty-One Medicinal Plant Species Against Herpes Simplex Virus, Acetone And Methanol Extracts From The Root Tissue Of Kalanchoe Pinnata Interferes With Hsv Types 1 And 2 Dna Replication And Early And Late Gene Expression Preventing The Spread Of Hsv In Vitro. Part 2: Professional Development Curriculum: Integrating Molecular Biology And Microbiology Into The Existing Secondary Biology Curricula, Mary Ruth Greer

Theses and Dissertations

PART 1: Thirty-one medicinal plant species from Hawaii, Morocco, and the Sonoran Desert, USA have been shown in past studies to be highly inhibitory to pathogenic bacteria, fungi, and certain cancer cell lines. However, none were tested for antiviral activity. Acetone and methanol extracts from these species were bio-assayed for antiviral activity against herpes simplex virus types 1 and 2 (HSV 1 and HSV 2) and for cytotoxicity to the Vero C1008 cell line. Extracts from these species were tested in vitro for antiviral activity using an immunoperoxidase mini-plaque reduction assay to detect viral structural protein synthesis. Sulforhodamine B and …


Levels Of The Secreted Vibrio Cholerae Attachment Factor Gbpa Are Modulated By Quorum-Sensing-Induced Proteolysis, Brooke A. Jude, Raquel M. Martinez, Karen Skorupski, Ronald K. Taylor Nov 2009

Levels Of The Secreted Vibrio Cholerae Attachment Factor Gbpa Are Modulated By Quorum-Sensing-Induced Proteolysis, Brooke A. Jude, Raquel M. Martinez, Karen Skorupski, Ronald K. Taylor

Dartmouth Scholarship

Vibrio cholerae is the etiologic agent of cholera in humans. Intestinal colonization occurs in a stepwise fashion, initiating with attachment to the small intestinal epithelium. This attachment is followed by expression of the toxin-coregulated pilus, microcolony formation, and cholera toxin (CT) production. We have recently characterized a secreted attachment factor, GlcNAc binding protein A (GbpA), which functions in attachment to environmental chitin sources as well as to intestinal substrates. Studies have been initiated to define the regulatory network involved in GbpA induction. At low cell density, GbpA was detected in the culture supernatant of all wild-type (WT) strains examined. In …


Identification Of The [Fefe]-Hydrogenase Responsible For Hydrogen Generation In Thermoanaerobacterium Saccharolyticum And Demonstration Of Increased Ethanol Yield Via Hydrogenase Knockout, A. Joe Shaw, David A. Hogsett, Lee R. Lynd Oct 2009

Identification Of The [Fefe]-Hydrogenase Responsible For Hydrogen Generation In Thermoanaerobacterium Saccharolyticum And Demonstration Of Increased Ethanol Yield Via Hydrogenase Knockout, A. Joe Shaw, David A. Hogsett, Lee R. Lynd

Dartmouth Scholarship

Three putative hydrogenase enzyme systems in Thermoanaerobacterium saccharolyticum were investigated at the genetic, mRNA, enzymatic, and phenotypic levels. A four-gene operon containing two [FeFe]-hydrogenase genes, provisionally termed hfs (hydrogenase-Fe-S), was found to be the main enzymatic catalyst of hydrogen production. hfsB, perhaps the most interesting gene of the operon, contains an [FeFe]-hydrogenase and a PAS sensory domain and has several conserved homologues among clostridial saccharolytic, cellulolytic, and pathogenic bacteria. A second hydrogenase gene cluster, hyd, exhibited methyl viologen-linked hydrogenase enzymatic activity, but hyd gene knockouts did not influence the hydrogen yield of …


Characterization Of Two Outer Membrane Proteins, Flgo And Flgp, That Influence Vibrio Cholerae Motility, Raquel M. Martinez, Madushini N. Dharmasena, Thomas J. Kirn, Ronald K. Taylor Sep 2009

Characterization Of Two Outer Membrane Proteins, Flgo And Flgp, That Influence Vibrio Cholerae Motility, Raquel M. Martinez, Madushini N. Dharmasena, Thomas J. Kirn, Ronald K. Taylor

Dartmouth Scholarship

Vibrio cholerae is highly motile by the action of a single polar flagellum. The loss of motility reduces the infectivity of V. cholerae, demonstrating that motility is an important virulence factor. FlrC is the sigma-54-dependent positive regulator of flagellar genes. Recently, the genes VC2206 (flgP) and VC2207 (flgO) were identified as being regulated by FlrC via a microarray analysis of an flrC mutant (D. C. Morris, F. Peng, J. R. Barker, and K. E. Klose, J. Bacteriol. 190:231-239, 2008). FlgP is reported to be an outer membrane lipoprotein required for motility that functions as a colonization factor. The study reported …


Phenotypic And Genetic Differences In Soil Bacterial Communities Among Successional Stages, Rowena A. G. Hamlet May 2009

Phenotypic And Genetic Differences In Soil Bacterial Communities Among Successional Stages, Rowena A. G. Hamlet

Theses and Dissertations - UTB/UTPA

The association between soil microbes and plants can influence plant growth and survival as well as alter soil microbial community dynamics. The purpose of this study was to determine how the length of this interaction between plants and bacteria affects the bacterial soil community structure. Soil microbial communities associated with plant communities at different successional stages at the Santa Ana National Wildlife Refuge were investigated. The study sites included three revegetated sites (4 months, 21 months, and 221 months since revegetation) and a control site (native brush, never revegetated). Five soil samples were randomly collected at each site. Soil microbial …


Long-Distance Delivery Of Bacterial Virulence Factors By Pseudomonas Aeruginosa Outer Membrane Vesicles, Jennifer M. Bomberger, Daniel P. Maceachran, Bonita A. Coutermarsh, Siying Ye, George A. O'Toole, Bruce A. Stanton, Frederick M. Ausubel Apr 2009

Long-Distance Delivery Of Bacterial Virulence Factors By Pseudomonas Aeruginosa Outer Membrane Vesicles, Jennifer M. Bomberger, Daniel P. Maceachran, Bonita A. Coutermarsh, Siying Ye, George A. O'Toole, Bruce A. Stanton, Frederick M. Ausubel

Dartmouth Scholarship

Bacteria use a variety of secreted virulence factors to manipulate host cells, thereby causing significant morbidity and mortality. We report a mechanism for the long-distance delivery of multiple bacterial virulence factors, simultaneously and directly into the host cell cytoplasm, thus obviating the need for direct interaction of the pathogen with the host cell to cause cytotoxicity. We show that outer membrane–derived vesicles (OMV) secreted by the opportunistic human pathogen Pseudomonas aeruginosa deliver multiple virulence factors, including β-lactamase, alkaline phosphatase, hemolytic phospholipase C, and Cif, directly into the host cytoplasm via fusion of OMV with lipid rafts in the host plasma …


The Microscope (2009-2010), Department Of Microbiology Jan 2009

The Microscope (2009-2010), Department Of Microbiology

The Microscope

No abstract provided.