Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Rhamnolipids Modulate Swarming Motility Patterns Of Pseudomonas Aeruginosa, Nicky C. Caiazza, Robert M. Q. Shanks, G. A. O'Toole Nov 2005

Rhamnolipids Modulate Swarming Motility Patterns Of Pseudomonas Aeruginosa, Nicky C. Caiazza, Robert M. Q. Shanks, G. A. O'Toole

Dartmouth Scholarship

Pseudomonas aeruginosa is capable of twitching, swimming, and swarming motility. The latter form of translocation occurs on semisolid surfaces, requires functional flagella and biosurfactant production, and results in complex motility patterns. From the point of inoculation, bacteria migrate as defined groups, referred to as tendrils, moving in a coordinated manner capable of sensing and responding to other groups of cells. We were able to show that P. aeruginosa produces extracellular factors capable of modulating tendril movement, and genetic analysis revealed that modulation of these movements was dependent on rhamnolipid biosynthesis. An rhlB mutant (deficient in mono- and dirhamnolipid production) and …


Collection, Isolation And Evaluation Of Nitrogen Fixing Bacteria In The Rio Grande Valley Of Texas, Thomas M. Eubanks May 2005

Collection, Isolation And Evaluation Of Nitrogen Fixing Bacteria In The Rio Grande Valley Of Texas, Thomas M. Eubanks

Theses and Dissertations - UTB/UTPA

Isolation from local soil samples with Phaseolus vulgaris (L.) produced 20 samples from which pure cultures were obtained. A commercial strain of Rhizobium #132 was obtained from Becker Underwood and included as a standard in the experiment. The results demonstrated that a variety of infective and effective of strains of Rhizobium nodulating Phaseolus vulgaris (L.) exist in the native soils of the Rio Grande Valley of Texas. A cluster of effective bacteria was identified and can serve as a basis for recommendations to inoculant industry in the Valley. An isolate collection has been established to serve as a source of …


Identification Of A Tcpc-Tcpq Outer Membrane Complex Involved In The Biogenesis Of The Toxin-Coregulated Pilus Of Vibrio Cholerae, Niranjan Bose, Ronald K. Taylor Apr 2005

Identification Of A Tcpc-Tcpq Outer Membrane Complex Involved In The Biogenesis Of The Toxin-Coregulated Pilus Of Vibrio Cholerae, Niranjan Bose, Ronald K. Taylor

Dartmouth Scholarship

The toxin-coregulated pilus (TCP) of Vibrio cholerae and the soluble TcpF protein that is secreted via the TCP biogenesis apparatus are essential for intestinal colonization. The TCP biogenesis apparatus is composed of at least nine proteins but is largely uncharacterized. TcpC is an outer membrane lipoprotein required for TCP biogenesis that is a member of the secretin protein superfamily. In the present study, analysis of TcpC in a series of strains deficient in each of the TCP biogenesis proteins revealed that TcpC was absent specifically in a tcpQ mutant. TcpQ is a predicted periplasmic protein required for TCP biogenesis. Fractionation …