Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Life Sciences

Why Do Antibiotics Exist?, Fabrizio Spagnolo, Monica Trujillo, John J. Dennehy Jan 2021

Why Do Antibiotics Exist?, Fabrizio Spagnolo, Monica Trujillo, John J. Dennehy

Publications and Research

In the struggle with antibiotic resistance, we are losing. There is now a serious threat of moving into a postantibiotic world. High levels of resistance, in terms of both frequency and strength, have evolved against all clinically approved antibiotics worldwide. The usable life span of new clinically approved antibiotics is typically less than a decade before resistance reaches frequencies so high as to require only guarded usage. However, microbes have produced antibiotics for millennia without resistance becoming an existential issue. If resistance is the inevitable consequence of antibiotic usage, as has been the human experience, why has it not become …


An Exploration Of The Phylogenetic Placement Of Recently Discovered Ultrasmall Archaeal Lineages, Jeffrey M. O'Brien Aug 2015

An Exploration Of The Phylogenetic Placement Of Recently Discovered Ultrasmall Archaeal Lineages, Jeffrey M. O'Brien

Honors Scholar Theses

In recent years, several new clades within the domain Achaea have been discovered. This is due in part to microbiological sampling of novel environments, and the increasing ability to detect and sequence uncultivable organisms through metagenomic analysis. These organisms share certain features, such as small cell size and streamlined genomes. Reduction in genome size can present difficulties to phylogenetic reconstruction programs. Since there is less genetic data to work with, these organisms often have missing genes in concatenated multiple sequence alignments. Evolutionary Biologists have not reached a consensus on the placement of these lineages in the archaeal evolutionary tree. There …


The Evolution Of Host Specificity In The Vertebrate Gut Symbiont Lactobacillus Reuteri, Steven Frese Nov 2012

The Evolution Of Host Specificity In The Vertebrate Gut Symbiont Lactobacillus Reuteri, Steven Frese

Department of Food Science and Technology: Dissertations, Theses, and Student Research

The vertebrate gut is home to one of the densest populations of life on Earth. This microbial community has a profound effect on host health, nutrition, development, behavior, and evolution. However, very little is known about how these microbes have evolved with their vertebrate hosts, how and whether they select hosts or how they remain associated with their hosts. Recent work identified Lactobacillus reuteri as an organism that is composed of host-specific sub-populations, each population associated with a different host animal. Representatives from each host-associated population were tested for their ability to colonize gnotobiotic mice, which only rodent strains could …


Two Boundaries Separate Borrelia Burgdorferi Populations In North America, Gabriele Margos, Jean I. Tsao, Santiago Castillo-Ramirez, Yvette A. Girard, Anne G. Hoen Jun 2012

Two Boundaries Separate Borrelia Burgdorferi Populations In North America, Gabriele Margos, Jean I. Tsao, Santiago Castillo-Ramirez, Yvette A. Girard, Anne G. Hoen

Dartmouth Scholarship

Understanding the spread of infectious diseases is crucial for implementing effective control measures. For this, it is important to obtain information on the contemporary population structure of a disease agent and to infer the evolutionary processes that may have shaped it. Here, we investigate on a continental scale the population structure of Borrelia burgdorferi, the causative agent of Lyme borreliosis (LB), a tick-borne disease, in North America. We test the hypothesis that the observed d population structure is congruent with recent population expansions and that these were preceded by bottlenecks mostly likely caused by the near extirpation in the 1900s …


Prospects For The Study Of Evolution In The Deep Biosphere, Jennifer F. Biddle, Jason B. Sylvan, William J. Brazelton, Katina J. Edwards, Craig L. Moyer, John F. Heidelberg, William C. Nelson Jan 2012

Prospects For The Study Of Evolution In The Deep Biosphere, Jennifer F. Biddle, Jason B. Sylvan, William J. Brazelton, Katina J. Edwards, Craig L. Moyer, John F. Heidelberg, William C. Nelson

Biology Faculty and Staff Publications

Since the days of Darwin, scientists have used the framework of the theory of evolution to explore the interconnectedness of life on Earth and adaptation of organisms to the ever-changing environment. The advent of molecular biology has advanced and accelerated the study of evolution by allowing direct examination of the genetic material that ultimately determines the phenotypes upon which selection acts. The study of evolution has been furthered through examination of microbial evolution, with large population numbers, short generation times, and easily extractable DNA. Such work has spawned the study of microbial biogeography, with the realization that concepts developed in …


Comparing Models Of Evolution For Ordered And Disordered Proteins, Celeste J. Brown, Audra K. Johnson, Gary W. Daughdrill Jan 2010

Comparing Models Of Evolution For Ordered And Disordered Proteins, Celeste J. Brown, Audra K. Johnson, Gary W. Daughdrill

Molecular Biosciences Faculty Publications

Most models of protein evolution are based upon proteins that form relatively rigid 3D structures. A significant fraction of proteins, the so-called disordered proteins, do not form rigid 3D structures and sample a broad conformational ensemble. Disordered proteins do not typically maintain long-range interactions, so the constraints on their evolution should be different than ordered proteins. To test this hypothesis, we developed and compared models of evolution for disordered and ordered proteins. Substitution matrices were constructed using the sequences of putative homologs for sets of experimentally characterized disordered and ordered proteins. Separate matrices, at three levels of sequence similarity ( …


Microbial Nad Metabolism: Lessons From Comparative Genomics, Francesca Gazzaniga, Rebecca Stebbins, Sheila Z. Chang, Mark A. Mcpeek, Charles Brenner Sep 2009

Microbial Nad Metabolism: Lessons From Comparative Genomics, Francesca Gazzaniga, Rebecca Stebbins, Sheila Z. Chang, Mark A. Mcpeek, Charles Brenner

Dartmouth Scholarship

NAD is a coenzyme for redox reactions and a substrate of NAD-consuming enzymes, including ADP-ribose transferases, Sir2-related protein lysine deacetylases, and bacterial DNA ligases. Microorganisms that synthesize NAD from as few as one to as many as five of the six identified biosynthetic precursors have been identified. De novo NAD synthesis from aspartate or tryptophan is neither universal nor strictly aerobic. Salvage NAD synthesis from nicotinamide, nicotinic acid, nicotinamide riboside, and nicotinic acid riboside occurs via modules of different genes. Nicotinamide salvage genes nadV and pncA, found in distinct bacteria, appear to have spread throughout the tree of life …


An Essay On Evolution: Evolution And The Origin Of Life Are Separate And Distinct Concepts, Kenneth Nickerson Feb 2009

An Essay On Evolution: Evolution And The Origin Of Life Are Separate And Distinct Concepts, Kenneth Nickerson

Kenneth Nickerson Papers

Two years ago on a Saturday morning, I was asked quite pointedly by two friends how I could be both spiritual and a scientist. My questioning friends felt that these qualities were incompatible. It turned out their church taught that scientists were ‘the enemy’ because scientists believe in evolution. Since that time, Letters to the Editor regarding evolution have attracted my attention. Many of the published letters stated that the author did not believe in evolution, and argued in support of his/her position that God had created life. The authors thoroughly confuse two concepts which are separate and distinct: Evolution …


Escherichia Coli And Antibiotic Resistance To Tetracycline Antibiotics, Taylor L. Dodgen Apr 2008

Escherichia Coli And Antibiotic Resistance To Tetracycline Antibiotics, Taylor L. Dodgen

Senior Honors Theses

Escherichia coli cells growing under ideal conditions are able to complete one reproduction cycle in as little as every twenty minutes. Since so many generations are able to be observed, one should theoretically be able to observe thousands of generations and determine evolution’s effects over a short period of time. In this experiment, E. coli K12 cells were cultured under ideal growth conditions but in the presence of antibiotics as a selective environmental stress in order to select for resistance. This was accomplished by serially passing colonies that were in close contact with two different, but similar antibiotics over a …