Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

The Effect Of Disturbance And Invasion On Fungal And Plant Communities Over An Elevational Gradient, Adam N. Trautwig Oct 2021

The Effect Of Disturbance And Invasion On Fungal And Plant Communities Over An Elevational Gradient, Adam N. Trautwig

Doctoral Dissertations

High-elevation ecosystems are at risk of disruption from the future effects of climate change. Sub-alpine meadows are a source of unique plant populations, intraspecific variation of elevationally extreme populations, and vital sources of fresh water resources. We evaluated the whole fungal communities, arbuscular mycorrhizal fungal (AMF) communities, plant communities, and edaphic variables of sub-alpine meadows in undisturbed, disturbed, and disturbed with a non-native member of the Brassicaceae (Thlaspi arvense) plots. In conjunction with measuring the effects of disturbance on native communities we conducted potting experiments on a dominant grass of sub-alpine meadows (Festuca thurberi). We also …


Extracellular Polymeric Substances In Oxygenic Photogranules: Investigation Of Their Role In Photogranulation In A Hydrostatic Environment, Wenye Camilla Kuo-Dahab Sep 2021

Extracellular Polymeric Substances In Oxygenic Photogranules: Investigation Of Their Role In Photogranulation In A Hydrostatic Environment, Wenye Camilla Kuo-Dahab

Doctoral Dissertations

The purpose of this dissertation was to assess the critical role of extracellular polymeric substances (EPS) in the photogranulation of activated sludge, in a hydrostatic environment. The first section evaluates the fate and dynamics of different fractions of EPS in sludge-based photogranulation under hydrostatic conditions. The study shows that during the transformation of activated sludge into a photogranular biomass, sludge’s base-extractable proteins selectively degrade. Strong correlations between base-extracted proteins and the growth of chlorophyll a and chlorophyll a/b ratio suggest that the bioavailability of this organic nitrogen is linked with selection and enrichment of filamentous cyanobacteria under hydrostatic conditions. The …


Physiological Constraints, Mechanisms, And Mineral Transformations Of Iron Reduction In Hyperthermophilic Crenarchaea, Srishti Kashyap Apr 2021

Physiological Constraints, Mechanisms, And Mineral Transformations Of Iron Reduction In Hyperthermophilic Crenarchaea, Srishti Kashyap

Doctoral Dissertations

Dissimilatory iron reduction by hyperthermophilic archaea occurs in many geothermal environments and typically relies on microbe-mineral interactions that transform various iron oxide minerals. However, the kinds of iron oxides that can be used, growth rates, extent of iron reduction, and the mineral transformations that occur due to this metabolism are poorly understood. This dissertation improves our fundamental understanding of the physiological mechanisms and mineral transformations of hyperthermophilic iron reduction using two model crenarchaea, Pyrodictium delaneyi and Pyrobaculum islandicum. Using growth yields and metabolite production rates, we demonstrated that a broad range of Fe(III) (oxyhydr)oxides of variable thermodynamic stability was …