Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Microbiology

University of Kentucky

Metabolism

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Regulation Of Skeletal Muscle Plasticity By The Gut Microbiome, Taylor R. Valentino Jan 2022

Regulation Of Skeletal Muscle Plasticity By The Gut Microbiome, Taylor R. Valentino

Theses and Dissertations--Physiology

Recent evidence suggests that the gut microbiome could play a role in skeletal muscle plasticity, providing novel treatments for muscle wasting diseases and/or performance enhancements. I first sought to determine if the gut microbiome is necessary for skeletal muscle adaptation to exercise. Forty-two, four-month old, female C57Bl/6J underwent nine weeks of weighted wheel running or remained in cage with a locked wheel, without or without the administration of antibiotics (treated). In response to wheel running, I found that antibiotic depletion of the microbiome led to a blunted hypertrophic response in the soleus muscle as measured by normalized muscle wet weight …


A Broad Spectrum Racemase In Pseudomonas Putida Kt2440 Plays A Key Role In Amino Acid Catabolism, Atanas D. Radkov, Luke A. Moe Jun 2018

A Broad Spectrum Racemase In Pseudomonas Putida Kt2440 Plays A Key Role In Amino Acid Catabolism, Atanas D. Radkov, Luke A. Moe

Plant and Soil Sciences Faculty Publications

The broad-spectrum amino acid racemase (Alr) of Pseudomonas putida KT2440 preferentially interconverts the L- and D-stereoisomers of Lys and Arg. Despite conservation of broad-spectrum racemases among bacteria, little is known regarding their physiological role. Here we explore potential functional roles for Alr in P. putida KT2440. We demonstrate through cellular fractionation that Alr enzymatic activity is found in the periplasm, consistent with its putative periplasm targeting sequence. Specific activity of Alr is highest during exponential growth, and this activity corresponds with an increased accumulation of D-Lys in the growth medium. An alr gene knockout strain (Δalr) was generated …


Draft Nuclear Genome Sequence Of The Liquid Hydrocarbon–Accumulating Green Microalga Botryococcus Braunii Race B (Showa), Daniel R. Browne, Jerry Jenkins, Jeremy Schmutz, Shengqiang Shu, Kerrie Barry, Jane Grimwood, Jennifer Chiniquy, Aditi Sharma, Thomas Daniel Niehaus, Taylor L. Weiss, Andrew T. Koppisch, David T. Fox, Suraj Dhungana, Shigeru Okada, Joe Chappell, Timothy P. Devarenne Apr 2017

Draft Nuclear Genome Sequence Of The Liquid Hydrocarbon–Accumulating Green Microalga Botryococcus Braunii Race B (Showa), Daniel R. Browne, Jerry Jenkins, Jeremy Schmutz, Shengqiang Shu, Kerrie Barry, Jane Grimwood, Jennifer Chiniquy, Aditi Sharma, Thomas Daniel Niehaus, Taylor L. Weiss, Andrew T. Koppisch, David T. Fox, Suraj Dhungana, Shigeru Okada, Joe Chappell, Timothy P. Devarenne

Plant and Soil Sciences Faculty Publications

Botryococcus braunii has long been known as a prodigious producer of liquid hydrocarbon oils that can be converted into combustion engine fuels. This draft genome for the B race of B. braunii will allow researchers to unravel important hydrocarbon biosynthetic pathways and identify possible regulatory networks controlling this unusual metabolism.