Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Microbiology

Technological University Dublin

Articles

Bacteria

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Acetaldehyde Production By Rothia Mucilaginosa Isolates From Patients With Oral Leukoplakia., Abdrazak Amer, Aine Whelan, Nezar N. Al-Hebshi, Claire M. Healy, Gary P. Moran Jan 2020

Acetaldehyde Production By Rothia Mucilaginosa Isolates From Patients With Oral Leukoplakia., Abdrazak Amer, Aine Whelan, Nezar N. Al-Hebshi, Claire M. Healy, Gary P. Moran

Articles

Rothia mucilaginosa has been found at high abundance on oral leukoplakia (OLK). The ability of clinical isolates to produce acetaldehyde (ACH) from ethanol has not been investigated. The objective of the current study was to determine the capacity of R. mucilaginosa isolates recovered from OLK to generate ACH. Analysis of R. mucilaginosa genomes (n = 70) shows that this species does not normally encode acetaldehyde dehydrogenase (ALDH) required for detoxification of ACH. The predicted OLK metagenome also exhibited reduced ALDH coding capacity. We analysed ACH production in 8 isolates of R. mucilaginosa and showed that this species is capable of …


Divergent Mechanisms Of Interaction Of Helicobacter Pylori And Campylobacter Jejuni With Mucus And Mucins, Julie Ann Naughton, Karina Mariño, Brendan Dolan, Colm Reid, Ronan Gough, Mary Gallagher, Michelle Kilcoyne, Jared Gerlachscience,, Lokesh Joshi, Pauline Rudd, Stephen Carrington, Billy Bourke, Marguerite Clyne Aug 2013

Divergent Mechanisms Of Interaction Of Helicobacter Pylori And Campylobacter Jejuni With Mucus And Mucins, Julie Ann Naughton, Karina Mariño, Brendan Dolan, Colm Reid, Ronan Gough, Mary Gallagher, Michelle Kilcoyne, Jared Gerlachscience,, Lokesh Joshi, Pauline Rudd, Stephen Carrington, Billy Bourke, Marguerite Clyne

Articles

Helicobacter pylori and Campylobacter jejuni colonize the stomach and intestinal mucus, respectively. Using a combination of mucus-secreting cells, purified mucins, and a novel mucin microarray platform, we examined the interactions of these two organisms with mucus and mucins. H. pylori and C. jejuni bound to distinctly different mucins. C. jejuni displayed a striking tropism for chicken gastrointestinal mucins compared to mucins from other animals and preferentially bound mucins from specific avian intestinal sites (in order of descending preference: the large intestine, proximal small intestine, and cecum). H. pylori bound to a number of animal mucins, including porcine stomach mucin, but …