Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Microbiology

Selected Works

HIV-1

Articles 1 - 16 of 16

Full-Text Articles in Life Sciences

A Sensitive Assay Using A Native Protein Substrate For Screening Hiv-1 Maturation Inhibitors Targeting The Protease Cleavage Site Between The Matrix And Capsid, Sook-Kyung Lee, Nancy Cheng, Emily Hull-Ryde, Marc Potempa, Celia Schiffer, William Janzen, Ronald Swanstrom Jan 2015

A Sensitive Assay Using A Native Protein Substrate For Screening Hiv-1 Maturation Inhibitors Targeting The Protease Cleavage Site Between The Matrix And Capsid, Sook-Kyung Lee, Nancy Cheng, Emily Hull-Ryde, Marc Potempa, Celia Schiffer, William Janzen, Ronald Swanstrom

Celia A. Schiffer

The matrix/capsid processing site in the HIV-1 Gag precursor is likely the most sensitive target to inhibit HIV-1 replication. We have previously shown that modest incomplete processing at the site leads to a complete loss of virion infectivity. In the study presented here, a sensitive assay based on fluorescence polarization that can monitor cleavage at the MA/CA site in the context of the folded protein substrate is described. The substrate, an MA/CA fusion protein, was labeled with the fluorescein-based FlAsH (fluorescein arsenical hairpin) reagent that binds to a tetracysteine motif (CCGPCC) that was introduced within the N-terminal domain of CA. …


Substrate Envelope-Designed Potent Hiv-1 Protease Inhibitors To Avoid Drug Resistance, Madhavi Nalam, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Michael Altman, Nese Yilmaz, Bruce Tidor, Tariq Rana, Celia Schiffer Jan 2015

Substrate Envelope-Designed Potent Hiv-1 Protease Inhibitors To Avoid Drug Resistance, Madhavi Nalam, Akbar Ali, G. S. Kiran Kumar Reddy, Hong Cao, Saima Anjum, Michael Altman, Nese Yilmaz, Bruce Tidor, Tariq Rana, Celia Schiffer

Celia A. Schiffer

The rapid evolution of HIV under selective drug pressure has led to multidrug resistant (MDR) strains that evade standard therapies. We designed highly potent HIV-1 protease inhibitors (PIs) using the substrate envelope model, which confines inhibitors within the consensus volume of natural substrates, providing inhibitors less susceptible to resistance because a mutation affecting such inhibitors will simultaneously affect viral substrate processing. The designed PIs share a common chemical scaffold but utilize various moieties that optimally fill the substrate envelope, as confirmed by crystal structures. The designed PIs retain robust binding to MDR protease variants and display exceptional antiviral potencies against …


Cooperative Effects Of Drug-Resistance Mutations In The Flap Region Of Hiv-1 Protease, Jennifer Foulkes-Murzycki, Christina Rosi, Nese Yilmaz, Robert Shafer, Celia Schiffer Jul 2013

Cooperative Effects Of Drug-Resistance Mutations In The Flap Region Of Hiv-1 Protease, Jennifer Foulkes-Murzycki, Christina Rosi, Nese Yilmaz, Robert Shafer, Celia Schiffer

Celia A. Schiffer

Understanding the interdependence of multiple mutations in conferring drug resistance is crucial to the development of novel and robust inhibitors. As HIV-1 protease continues to adapt and evade inhibitors while still maintaining the ability to specifically recognize and efficiently cleave its substrates, the problem of drug resistance has become more complicated. Under the selective pressure of therapy, correlated mutations accumulate throughout the enzyme to compromise inhibitor binding, but characterizing their energetic interdependency is not straightforward. A particular drug resistant variant (L10I/G48V/I54V/V82A) displays extreme entropy-enthalpy compensation relative to wild-type enzyme but a similar variant (L10I/G48V/I54A/V82A) does not. Individual mutations of sites …


Structural And Thermodynamic Basis Of Amprenavir/Darunavir And Atazanavir Resistance In Hiv-1 Protease With Mutations At Residue 50, Seema Mittal, Rajintha Bandaranayake, Nancy King, Moses Prabu-Jeyabalan, Madhavi Nalam, Ellen Nalivaika, Nese Yilmaz, Celia Schiffer Jul 2013

Structural And Thermodynamic Basis Of Amprenavir/Darunavir And Atazanavir Resistance In Hiv-1 Protease With Mutations At Residue 50, Seema Mittal, Rajintha Bandaranayake, Nancy King, Moses Prabu-Jeyabalan, Madhavi Nalam, Ellen Nalivaika, Nese Yilmaz, Celia Schiffer

Celia A. Schiffer

Drug resistance occurs through a series of subtle changes that maintain substrate recognition but no longer permit inhibitor binding. In HIV-1 protease, mutations at I50 are associated with such subtle changes that confer differential resistance to specific inhibitors. Residue I50 is located at the protease flap tips, closing the active site upon ligand binding. Under selective drug pressure, I50V/L substitutions emerge in patients, compromising drug susceptibility and leading to treatment failure. The I50V substitution is often associated with amprenavir (APV) and darunavir (DRV) resistance, while the I50L substitution is observed in patients failing atazanavir (ATV) therapy. To explain how APV, …


Molecular Basis For Drug Resistance In Hiv-1 Protease, Akbar Ali, Rajintha M. Bandaranayake, Yufeng Cai, Nancy M. King, Madhavi Kolli, Seema Mittal, Jennifer E. Foulkes-Murzycki, Madhavi N. L. Nalam, Ellen A. Nalivaika, Aysegul Ozen, Moses Prabu-Jeyabalan, Kelly Thayer, Celia A. Schiffer Nov 2011

Molecular Basis For Drug Resistance In Hiv-1 Protease, Akbar Ali, Rajintha M. Bandaranayake, Yufeng Cai, Nancy M. King, Madhavi Kolli, Seema Mittal, Jennifer E. Foulkes-Murzycki, Madhavi N. L. Nalam, Ellen A. Nalivaika, Aysegul Ozen, Moses Prabu-Jeyabalan, Kelly Thayer, Celia A. Schiffer

Celia A. Schiffer

HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All …


Co-Evolution Of Nelfinavir-Resistant Hiv-1 Protease And The P1-P6 Substrate, Madhavi Kolli, Stephane Lastere, Celia Schiffer Nov 2011

Co-Evolution Of Nelfinavir-Resistant Hiv-1 Protease And The P1-P6 Substrate, Madhavi Kolli, Stephane Lastere, Celia Schiffer

Celia A. Schiffer

The selective pressure of the competitive protease inhibitors causes both HIV-1 protease and occasionally its substrates to evolve drug resistance. We hypothesize that this occurs particularly in substrates that protrude beyond the substrate envelope and contact residues that mutate in response to a particular protease inhibitor. To validate this hypothesis, we analyzed substrate and protease sequences for covariation. Using the chi2 test, we show a positive correlation between the nelfinavir-resistant D30N/N88D protease mutations and mutations at the p1-p6 cleavage site as compared to the other cleavage sites. Both nelfinavir and the substrate p1-p6 protrude beyond the substrate envelope and contact …


Rationale For More Diverse Inhibitors In Competition With Substrates In Hiv-1 Protease, Nevra Ozer, Celia Schiffer, Turkan Haliloglu Nov 2011

Rationale For More Diverse Inhibitors In Competition With Substrates In Hiv-1 Protease, Nevra Ozer, Celia Schiffer, Turkan Haliloglu

Celia A. Schiffer

The structural fluctuations of HIV-1 protease in interaction with its substrates versus inhibitors were analyzed using the anisotropic network model. The directions of fluctuations in the most cooperative functional modes differ mainly around the dynamically key regions, i.e., the hinge axes, which appear to be more flexible in substrate complexes. The flexibility of HIV-1 protease is likely optimized for the substrates' turnover, resulting in substrate complexes being dynamic. In contrast, in an inhibitor complex, the inhibitor should bind and lock down to inactivate the active site. Protease and ligands are not independent. Substrates are also more flexible than inhibitors and …


The Challenge Of Developing Robust Drugs To Overcome Resistance, Amy Anderson, Michael Pollastri, Celia Schiffer, Norton Peet Nov 2011

The Challenge Of Developing Robust Drugs To Overcome Resistance, Amy Anderson, Michael Pollastri, Celia Schiffer, Norton Peet

Celia A. Schiffer

Drug resistance is problematic in microbial disease, viral disease and cancer. Understanding at the outset that resistance will impact the effectiveness of any new drug that is developed for these disease categories is imperative. In this Feature, we detail approaches that have been taken with selected drug targets to reduce the susceptibility of new drugs to resistance mechanisms. We will also define the concepts of robust drugs and resilient targets, and discuss how the design of robust drugs and the selection of resilient targets can lead to successful strategies for combating resistance.


Dynamics Of Preferential Substrate Recognition In Hiv-1 Protease: Redefining The Substrate Envelope, Aysegul Ozen, Turkan Haliloglu, Celia Schiffer Nov 2011

Dynamics Of Preferential Substrate Recognition In Hiv-1 Protease: Redefining The Substrate Envelope, Aysegul Ozen, Turkan Haliloglu, Celia Schiffer

Celia A. Schiffer

Human immunodeficiency virus type 1 (HIV-1) protease (PR) permits viral maturation by processing the gag and gag-pro-pol polyproteins. HIV-1 PR inhibitors (PIs) are used in combination antiviral therapy but the emergence of drug resistance has limited their efficacy. The rapid evolution of HIV-1 necessitates consideration of drug resistance in novel drug design. Drug-resistant HIV-1 PR variants no longer inhibited efficiently, continue to hydrolyze the natural viral substrates. Though highly diverse in sequence, the HIV-1 PR substrates bind in a conserved three-dimensional shape we termed the substrate envelope. Earlier, we showed that resistance mutations arise where PIs protrude beyond the substrate …


Tmc310911, A Novel Human Immunodeficiency Virus Type 1 Protease Inhibitor, Shows In Vitro An Improved Resistance Profile And Higher Genetic Barrier To Resistance Compared With Current Protease Inhibitors, Inge Dierynck, Herwig Van Marck, Marcia Van Ginderen, Tim Jonckers, Madhavi Nalam, Celia Schiffer, Araz Raoof, Guenter Kraus, Gaston Picchio Nov 2011

Tmc310911, A Novel Human Immunodeficiency Virus Type 1 Protease Inhibitor, Shows In Vitro An Improved Resistance Profile And Higher Genetic Barrier To Resistance Compared With Current Protease Inhibitors, Inge Dierynck, Herwig Van Marck, Marcia Van Ginderen, Tim Jonckers, Madhavi Nalam, Celia Schiffer, Araz Raoof, Guenter Kraus, Gaston Picchio

Celia A. Schiffer

TMC310911 is a novel human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) structurally closely related to darunavir (DRV) but with improved virological characteristics. TMC310911 has potent activity against wild-type (WT) HIV-1 (median 50% effective concentration [EC(50)], 14 nM) and a wide spectrum of recombinant HIV-1 clinical isolates, including multiple-PI-resistant strains with decreased susceptibility to currently approved PIs (fold change [FC] in EC(50), >10). For a panel of 2,011 recombinant clinical isolates with decreased susceptibility to at least one of the currently approved PIs, the FC in TMC310911 EC(50) was


Evaluating The Substrate-Envelope Hypothesis: Structural Analysis Of Novel Hiv-1 Protease Inhibitors Designed To Be Robust Against Drug Resistance, Madhavi Nalam, Akbar Ali, Michael Altman, G. S. Kiran Kumar Reddy, Sripriya Chellappan, Visvaldas Kairys, Aysegul Ozen, Hong Cao, Michael Gilson, Bruce Tidor, Tariq Rana, Celia Schiffer Nov 2011

Evaluating The Substrate-Envelope Hypothesis: Structural Analysis Of Novel Hiv-1 Protease Inhibitors Designed To Be Robust Against Drug Resistance, Madhavi Nalam, Akbar Ali, Michael Altman, G. S. Kiran Kumar Reddy, Sripriya Chellappan, Visvaldas Kairys, Aysegul Ozen, Hong Cao, Michael Gilson, Bruce Tidor, Tariq Rana, Celia Schiffer

Celia A. Schiffer

Drug resistance mutations in HIV-1 protease selectively alter inhibitor binding without significantly affecting substrate recognition and cleavage. This alteration in molecular recognition led us to develop the substrate-envelope hypothesis which predicts that HIV-1 protease inhibitors that fit within the overlapping consensus volume of the substrates are less likely to be susceptible to drug-resistant mutations, as a mutation impacting such inhibitors would simultaneously impact the processing of substrates. To evaluate this hypothesis, over 130 HIV-1 protease inhibitors were designed and synthesized using three different approaches with and without substrate-envelope constraints. A subset of 16 representative inhibitors with binding affinities to wild-type …


Decomposing The Energetic Impact Of Drug Resistant Mutations In Hiv-1 Protease On Binding Drv, Yufeng Cai, Celia Schiffer Nov 2011

Decomposing The Energetic Impact Of Drug Resistant Mutations In Hiv-1 Protease On Binding Drv, Yufeng Cai, Celia Schiffer

Celia A. Schiffer

Darunavir (DRV) is a high affinity (4.5x10(-12) M, DeltaG = -15.2 kcal/mol) HIV-1 protease inhibitor. Two drug-resistant protease variants FLAP+ (L10I, G48V, I54V, V82A) and ACT (V82T, I84V) decrease the binding affinity with DRV by 1.0 kcal/mol and 1.6 kcal/mol respectively. In this study the absolute and relative binding free energies of DRV with wild-type protease, FLAP+ and ACT were calculated with MM-PB/GBSA and thermodynamic integration methods, respectively. Free energy decomposition elucidated that the mutations conferred resistance by distorting the active site of HIV-1 protease so that the residues that lost binding free energy were not limited to the sites …


The Effect Of Clade-Specific Sequence Polymorphisms On Hiv-1 Protease Activity And Inhibitor Resistance Pathways, Rajintha Bandaranayake, Madhavi Kolli, Nancy King, Ellen Nalivaika, Annie Heroux, Junko Kakizawa, Wataru Sugiura, Celia Schiffer Nov 2011

The Effect Of Clade-Specific Sequence Polymorphisms On Hiv-1 Protease Activity And Inhibitor Resistance Pathways, Rajintha Bandaranayake, Madhavi Kolli, Nancy King, Ellen Nalivaika, Annie Heroux, Junko Kakizawa, Wataru Sugiura, Celia Schiffer

Celia A. Schiffer

The majority of HIV-1 infections around the world result from non-B clade HIV-1 strains. The CRF01_AE (AE) strain is seen principally in Southeast Asia. AE protease differs by approximately 10% in amino acid sequence from clade B protease and carries several naturally occurring polymorphisms that are associated with drug resistance in clade B. AE protease has been observed to develop resistance through a nonactive-site N88S mutation in response to nelfinavir (NFV) therapy, whereas clade B protease develops both the active-site mutation D30N and the nonactive-site mutation N88D. Structural and biochemical studies were carried out with wild-type and NFV-resistant clade B …


Lack Of Synergy For Inhibitors Targeting A Multi-Drug-Resistant Hiv-1 Protease, Nancy King, Laurence Melnick, Moses Prabu-Jeyabalan, Ellen Nalivaika, Shiow-Shong Yang, Yun Gao, Xiaoyi Nie, Charles Zepp, Donald Heefner, Celia Schiffer Nov 2011

Lack Of Synergy For Inhibitors Targeting A Multi-Drug-Resistant Hiv-1 Protease, Nancy King, Laurence Melnick, Moses Prabu-Jeyabalan, Ellen Nalivaika, Shiow-Shong Yang, Yun Gao, Xiaoyi Nie, Charles Zepp, Donald Heefner, Celia Schiffer

Celia A. Schiffer

The three-dimensional structures of indinavir and three newly synthesized indinavir analogs in complex with a multi-drug-resistant variant (L63P, V82T, I84V) of HIV-1 protease were determined to approximately 2.2 A resolution. Two of the three analogs have only a single modification of indinavir, and their binding affinities to the variant HIV-1 protease are enhanced over that of indinavir. However, when both modifications were combined into a single compound, the binding affinity to the protease variant was reduced. On close examination, the structural rearrangements in the protease that occur in the tightest binding inhibitor complex are mutually exclusive with the structural rearrangements …


Three Residues In Hiv-1 Matrix Contribute To Protease Inhibitor Susceptibility And Replication Capacity, Chris Parry, Madhavi Kolli, Richard Myers, Patricia Cane, Celia Schiffer, Deenan Pillay Nov 2011

Three Residues In Hiv-1 Matrix Contribute To Protease Inhibitor Susceptibility And Replication Capacity, Chris Parry, Madhavi Kolli, Richard Myers, Patricia Cane, Celia Schiffer, Deenan Pillay

Celia A. Schiffer

Other than cleavage site mutations, there is little data on specific positions within Gag that impact on HIV protease inhibitor susceptibility. We have recently shown that non-cleavage site mutations in gag, particularly within matrix protein can restore replication capacity and further reduce protease inhibitor drug susceptibility when coexpressed with a drug-resistant (mutant) protease. The matrix protein of this patient-derived virus was studied in order to identify specific changes responsible for this phenotype. Three amino acid changes in matrix (R76K, Y79F, and T81A) had an impact on replication capacity as well as drug susceptibility. Introduction of these three changes into wild-type …


Structure-Based Design, Synthesis, And Structure-Activity Relationship Studies Of Hiv-1 Protease Inhibitors Incorporating Phenyloxazolidinones, Akbar Ali, G. S. Kiran Kumar Reddy, Madhavi Nalam, Saima Anjum, Hong Cao, Celia Schiffer, Tariq Rana Nov 2011

Structure-Based Design, Synthesis, And Structure-Activity Relationship Studies Of Hiv-1 Protease Inhibitors Incorporating Phenyloxazolidinones, Akbar Ali, G. S. Kiran Kumar Reddy, Madhavi Nalam, Saima Anjum, Hong Cao, Celia Schiffer, Tariq Rana

Celia A. Schiffer

A series of new HIV-1 protease inhibitors with the hydroxyethylamine core and different phenyloxazolidinone P2 ligands were designed and synthesized. Variation of phenyl substitutions at the P2 and P2' moieties significantly affected the binding affinity and antiviral potency of the inhibitors. In general, compounds with 2- and 4-substituted phenyloxazolidinones at P2 exhibited lower binding affinities than 3-substituted analogues. Crystal structure analyses of ligand-enzyme complexes revealed different binding modes for 2- and 3-substituted P2 moieties in the protease S2 binding pocket, which may explain their different binding affinities. Several compounds with 3-substituted P2 moieties demonstrated picomolar binding affinity and low nanomolar …