Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Ubr3, A Novel Modulator Of Hh Signaling Affects The Degradation Of Costal-2 And Kif7 Through Poly-Ubiquitination, Tongchao Li, Junkai Fan, Bernardo Blanco-Sánchez, Nikolaos Giagtzoglou, Guang Lin, Shinya Yamamoto, Manish Jaiswal, Kuchuan Chen, Jie Zhang, Wei Wei, Michael T. Lewis, Andrew K. Groves, Monte Westerfield, Jianhang Jia, Hugo J. Bellen May 2016

Ubr3, A Novel Modulator Of Hh Signaling Affects The Degradation Of Costal-2 And Kif7 Through Poly-Ubiquitination, Tongchao Li, Junkai Fan, Bernardo Blanco-Sánchez, Nikolaos Giagtzoglou, Guang Lin, Shinya Yamamoto, Manish Jaiswal, Kuchuan Chen, Jie Zhang, Wei Wei, Michael T. Lewis, Andrew K. Groves, Monte Westerfield, Jianhang Jia, Hugo J. Bellen

Markey Cancer Center Faculty Publications

Hedgehog (Hh) signaling regulates multiple aspects of metazoan development and tissue homeostasis, and is constitutively active in numerous cancers. We identified Ubr3, an E3 ubiquitin ligase, as a novel, positive regulator of Hh signaling in Drosophila and vertebrates. Hh signaling regulates the Ubr3-mediated poly-ubiquitination and degradation of Cos2, a central component of Hh signaling. In developing Drosophila eye discs, loss of ubr3 leads to a delayed differentiation of photoreceptors and a reduction in Hh signaling. In zebrafish, loss of Ubr3 causes a decrease in Shh signaling in the developing eyes, somites, and sensory neurons. However, not all tissues that require …


Characterization Of Stem Cell Turnover In A Living Epithelial Bilayer, Elizabeth Sumner May 2016

Characterization Of Stem Cell Turnover In A Living Epithelial Bilayer, Elizabeth Sumner

Dissertations & Theses (Open Access)

Homeostatic maintenance of epithelia requires the renewal and replacement of old or dying cells while sustaining a functional barrier. Imbalance between cell production and elimination are hypothesized to underlie many pathological conditions. However, our knowledge of cell turnover within living tissues remains largely restricted to static images due to the limited ability to study epithelia in their native context. Here we report that clearance of damaged basal stem cells promotes compensatory proliferation of neighboring stem cells to maintain overall population numbers in a bilayered epithelium. Time-lapse imaging and electron microscopy experiments reveal that dying cells are rapidly cleared as nearby …