Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Acute Systemic Inflammatory Response Alters Transcription Profile Of Genes Related To Immune Response And Ca 2+ Homeostasis In Hippocampus; Relevance To Neurodegenerative Disorders, Grzegorz A. Czapski, Yuhai Zhao, Walter J. Lukiw, Joanna B. Strosznajder Oct 2020

Acute Systemic Inflammatory Response Alters Transcription Profile Of Genes Related To Immune Response And Ca 2+ Homeostasis In Hippocampus; Relevance To Neurodegenerative Disorders, Grzegorz A. Czapski, Yuhai Zhao, Walter J. Lukiw, Joanna B. Strosznajder

School of Medicine Faculty Publications

Acute systemic inflammatory response (SIR) triggers an alteration in the transcription of brain genes related to neuroinflammation, oxidative stress and cells death. These changes are also characteristic for Alzheimer’s disease (AD) neuropathology. Our aim was to evaluate gene expression patterns in the mouse hippocampus (MH) by using microarray technology 12 and 96 h after SIR evoked by lipopolysaccharide (LPS). The results were compared with microarray analysis of human postmortem hippocampal AD tissues. It was found that 12 h after LPS administration the expression of 231 genes in MH was significantly altered (FC > 2.0); however, after 96 h only the S100a8 …


Wild Mice With Different Social Network Sizes Vary In Brain Gene Expression, Patricia C. Lopes, Barbara König Jul 2020

Wild Mice With Different Social Network Sizes Vary In Brain Gene Expression, Patricia C. Lopes, Barbara König

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Background

Appropriate social interactions influence animal fitness by impacting several processes, such as mating, territory defense, and offspring care. Many studies shedding light on the neurobiological underpinnings of social behavior have focused on nonapeptides (vasopressin, oxytocin, and homologues) and on sexual or parent-offspring interactions. Furthermore, animals have been studied under artificial laboratory conditions, where the consequences of behavioral responses may not be as critical as when expressed under natural environments, therefore obscuring certain physiological responses. We used automated recording of social interactions of wild house mice outside of the breeding season to detect individuals at both tails of a distribution …