Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

Physiology Faculty Publications

Series

2017

Humans

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Sustained Sensitizing Effects Of Tumor Necrosis Factor Alpha On Sensory Nerves In Lung And Airways, Ruei-Lung Lin, Qihai Gu, Mehdi Khosravi, Lu-Yuan Lee Dec 2017

Sustained Sensitizing Effects Of Tumor Necrosis Factor Alpha On Sensory Nerves In Lung And Airways, Ruei-Lung Lin, Qihai Gu, Mehdi Khosravi, Lu-Yuan Lee

Physiology Faculty Publications

Tumor necrosis factor alpha (TNFα) plays a significant role in the pathogenesis of airway inflammatory diseases. Inhalation of aerosolized TNFα induced airway hyperresponsiveness accompanied by airway inflammation in healthy human subjects, but the underlying mechanism is not fully understood. We recently reported a series of studies aimed to investigate if TNFα elevates the sensitivity of vagal bronchopulmonary sensory nerves in a mouse model; these studies are summarized in this mini-review. Our results showed that intratracheal instillation of TNFα induced pronounced airway inflammation 24 hours later, as illustrated by infiltration of eosinophils and neutrophils and the release of inflammatory mediators and …


Alzheimer's Disease Genetics And Abca7 Splicing, Jared B. Vasquez, James F. Simpson, Ryan Harpole, Steven Estus Jul 2017

Alzheimer's Disease Genetics And Abca7 Splicing, Jared B. Vasquez, James F. Simpson, Ryan Harpole, Steven Estus

Physiology Faculty Publications

Both common and rare polymorphisms within ABCA7 have been associated with Alzheimer’s disease (AD). In particular, the rare AD associated polymorphism rs200538373 was associated with altered ABCA7 exon 41 splicing and an AD risk odds ratio of ∼1.9. To probe the role of this polymorphism in ABCA7 splicing, we used minigene studies and qPCR of human brain RNA. We report aberrant ABCA7 exon 41 splicing in the brain of a carrier of the rs200538373 minor C allele. Moreover, minigene studies show that rs200538373 acts as a robust functional variant in vitro. Lastly, although the ABCA7 isoform with an extended …


Cib2 Interacts With Tmc1 And Tmc2 And Is Essential For Mechanotransduction In Auditory Hair Cells, Arnaud P. J. Giese, Yi-Quan Tang, Ghanshyam P. Sinha, Michael R. Bowl, Adam C. Goldring, Andrew Parker, Mary J. Freeman, Steve D. M. Brown, Saima Riazuddin, Robert Fettiplace, William R. Schafer, Gregory I. Frolenkov, Zubair M. Ahmed Jun 2017

Cib2 Interacts With Tmc1 And Tmc2 And Is Essential For Mechanotransduction In Auditory Hair Cells, Arnaud P. J. Giese, Yi-Quan Tang, Ghanshyam P. Sinha, Michael R. Bowl, Adam C. Goldring, Andrew Parker, Mary J. Freeman, Steve D. M. Brown, Saima Riazuddin, Robert Fettiplace, William R. Schafer, Gregory I. Frolenkov, Zubair M. Ahmed

Physiology Faculty Publications

Inner ear hair cells detect sound through deflection of stereocilia, the microvilli-like projections that are arranged in rows of graded heights. Calcium and integrin-binding protein 2 is essential for hearing and localizes to stereocilia, but its exact function is unknown. Here, we have characterized two mutant mouse lines, one lacking calcium and integrin-binding protein 2 and one carrying a human deafness-related Cib2 mutation, and show that both are deaf and exhibit no mechanotransduction in auditory hair cells, despite the presence of tip links that gate the mechanotransducer channels. In addition, mechanotransducing shorter row stereocilia overgrow in hair cell bundles of …


Myocardial Relaxation Is Accelerated By Fast Stretch, Not Reduced Afterload, Charles S. Chung, Charles W. Hoopes, Kenneth S. Campbell Feb 2017

Myocardial Relaxation Is Accelerated By Fast Stretch, Not Reduced Afterload, Charles S. Chung, Charles W. Hoopes, Kenneth S. Campbell

Physiology Faculty Publications

Fast relaxation of cross-bridge generated force in the myocardium facilitates efficient diastolic function. Recently published research studying mechanisms that modulate the relaxation rate has focused on molecular factors. Mechanical factors have received less attention since the 1980s when seminal work established the theory that reducing afterload accelerates the relaxation rate. Clinical trials using afterload reducing drugs, partially based on this theory, have thus far failed to improve outcomes for patients with diastolic dysfunction. Therefore, we reevaluated the protocols that suggest reducing afterload accelerates the relaxation rate and identified that myocardial relengthening was a potential confounding factor. We hypothesized that the …