Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

University of Kentucky

Physiology Faculty Publications

2017

Mutation

Articles 1 - 1 of 1

Full-Text Articles in Life Sciences

Cib2 Interacts With Tmc1 And Tmc2 And Is Essential For Mechanotransduction In Auditory Hair Cells, Arnaud P. J. Giese, Yi-Quan Tang, Ghanshyam P. Sinha, Michael R. Bowl, Adam C. Goldring, Andrew Parker, Mary J. Freeman, Steve D. M. Brown, Saima Riazuddin, Robert Fettiplace, William R. Schafer, Gregory I. Frolenkov, Zubair M. Ahmed Jun 2017

Cib2 Interacts With Tmc1 And Tmc2 And Is Essential For Mechanotransduction In Auditory Hair Cells, Arnaud P. J. Giese, Yi-Quan Tang, Ghanshyam P. Sinha, Michael R. Bowl, Adam C. Goldring, Andrew Parker, Mary J. Freeman, Steve D. M. Brown, Saima Riazuddin, Robert Fettiplace, William R. Schafer, Gregory I. Frolenkov, Zubair M. Ahmed

Physiology Faculty Publications

Inner ear hair cells detect sound through deflection of stereocilia, the microvilli-like projections that are arranged in rows of graded heights. Calcium and integrin-binding protein 2 is essential for hearing and localizes to stereocilia, but its exact function is unknown. Here, we have characterized two mutant mouse lines, one lacking calcium and integrin-binding protein 2 and one carrying a human deafness-related Cib2 mutation, and show that both are deaf and exhibit no mechanotransduction in auditory hair cells, despite the presence of tip links that gate the mechanotransducer channels. In addition, mechanotransducing shorter row stereocilia overgrow in hair cell bundles of …