Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

Selected Works

Celia A. Schiffer

Models, Molecular

Publication Year
File Type

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Structural And Thermodynamic Basis Of Amprenavir/Darunavir And Atazanavir Resistance In Hiv-1 Protease With Mutations At Residue 50, Seema Mittal, Rajintha Bandaranayake, Nancy King, Moses Prabu-Jeyabalan, Madhavi Nalam, Ellen Nalivaika, Nese Yilmaz, Celia Schiffer Jul 2013

Structural And Thermodynamic Basis Of Amprenavir/Darunavir And Atazanavir Resistance In Hiv-1 Protease With Mutations At Residue 50, Seema Mittal, Rajintha Bandaranayake, Nancy King, Moses Prabu-Jeyabalan, Madhavi Nalam, Ellen Nalivaika, Nese Yilmaz, Celia Schiffer

Celia A. Schiffer

Drug resistance occurs through a series of subtle changes that maintain substrate recognition but no longer permit inhibitor binding. In HIV-1 protease, mutations at I50 are associated with such subtle changes that confer differential resistance to specific inhibitors. Residue I50 is located at the protease flap tips, closing the active site upon ligand binding. Under selective drug pressure, I50V/L substitutions emerge in patients, compromising drug susceptibility and leading to treatment failure. The I50V substitution is often associated with amprenavir (APV) and darunavir (DRV) resistance, while the I50L substitution is observed in patients failing atazanavir (ATV) therapy. To explain how APV, …


Crystal Structure Of Lysine Sulfonamide Inhibitor Reveals The Displacement Of The Conserved Flap Water Molecule In Human Immunodeficiency Virus Type 1 Protease, Madhavi Nalam, Anik Peeters, Tim Jonckers, Inge Dierynck, Celia Schiffer Nov 2011

Crystal Structure Of Lysine Sulfonamide Inhibitor Reveals The Displacement Of The Conserved Flap Water Molecule In Human Immunodeficiency Virus Type 1 Protease, Madhavi Nalam, Anik Peeters, Tim Jonckers, Inge Dierynck, Celia Schiffer

Celia A. Schiffer

Human immunodeficiency virus type 1 (HIV-1) protease has been continuously evolving and developing resistance to all of the protease inhibitors. This requires the development of new inhibitors that bind to the protease in a novel fashion. Most of the inhibitors that are on the market are peptidomimetics, where a conserved water molecule mediates hydrogen bonding interactions between the inhibitors and the flaps of the protease. Recently a new class of inhibitors, lysine sulfonamides, was developed to combat the resistant variants of HIV protease. Here we report the crystal structure of a lysine sulfonamide. This inhibitor binds to the active site …


Mechanism Of Substrate Recognition By Drug-Resistant Human Immunodeficiency Virus Type 1 Protease Variants Revealed By A Novel Structural Intermediate, Moses Prabu-Jeyabalan, Ellen A. Nalivaika, Keith Romano, Celia A. Schiffer Nov 2011

Mechanism Of Substrate Recognition By Drug-Resistant Human Immunodeficiency Virus Type 1 Protease Variants Revealed By A Novel Structural Intermediate, Moses Prabu-Jeyabalan, Ellen A. Nalivaika, Keith Romano, Celia A. Schiffer

Celia A. Schiffer

Human immunodeficiency virus type 1 (HIV-1) protease processes and cleaves the Gag and Gag-Pol polyproteins, allowing viral maturation, and therefore is an important target for antiviral therapy. Ligand binding occurs when the flaps open, allowing access to the active site. This flexibility in flap geometry makes trapping and crystallizing structural intermediates in substrate binding challenging. In this study, we report two crystal structures of two HIV-1 protease variants bound with their corresponding nucleocapsid-p1 variant. One of the flaps in each of these structures exhibits an unusual "intermediate" conformation. Analysis of the flap-intermediate and flap-closed crystal structures reveals that the intermonomer …


Point Mutants Of Ehec Intimin That Diminish Tir Recognition And Actin Pedestal Formation Highlight A Putative Tir Binding Pocket, Hui Liu, Padhma Radhakrishnan, Loranne Magoun, Moses Prabu-Jeyabalan, Kenneth Campellone, Pamela Savage, Feng He, Celia Schiffer, John Leong Nov 2011

Point Mutants Of Ehec Intimin That Diminish Tir Recognition And Actin Pedestal Formation Highlight A Putative Tir Binding Pocket, Hui Liu, Padhma Radhakrishnan, Loranne Magoun, Moses Prabu-Jeyabalan, Kenneth Campellone, Pamela Savage, Feng He, Celia Schiffer, John Leong

Celia A. Schiffer

Attachment to host cells by enterohaemorrhagic Escherichia coli (EHEC) is associated with the formation of a highly organized cytoskeletal structure containing filamentous actin, termed an attaching and effacing (AE) lesion. Intimin, an outer membrane protein of EHEC, is required for the formation of AE lesions, as is Tir, a bacterial protein that is translocated into the host cell to function as a receptor for intimin. We established a yeast two-hybrid assay for intimin-Tir interaction and, after random mutagenesis, isolated 24 point mutants in intimin, which disrupted Tir recognition in this system. Analysis of 11 point mutants revealed a correlation between …


Contribution Of Ser386 And Ser396 To Activation Of Interferon Regulatory Factor 3, Weijun Chen, Hema Srinath, Suvana Lam, Celia Schiffer, William Royer, Kai Lin Nov 2011

Contribution Of Ser386 And Ser396 To Activation Of Interferon Regulatory Factor 3, Weijun Chen, Hema Srinath, Suvana Lam, Celia Schiffer, William Royer, Kai Lin

Celia A. Schiffer

IRF-3, a member of the interferon regulatory factor (IRF) family of transcription factors, functions in innate immune defense against viral infection. Upon infection, host cell IRF-3 is activated by phosphorylation at its seven C-terminal Ser/Thr residues: (385)SSLENTVDLHISNSHPLSLTS(405). This phosphoactivation triggers IRF-3 to react with the coactivators, CREB-binding protein (CBP)/p300, to form a complex that activates target genes in the nucleus. However, the role of each phosphorylation site for IRF-3 phosphoactivation remains unresolved. To address this issue, all seven Ser/Thr potential phosphorylation sites were screened by mutational studies, size-exclusion chromatography, and isothermal titration calorimetry. Using purified proteins, we show that CBP …