Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

Providence

Series

2017

Transcriptome

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

High Resolution Time-Course Mapping Of Early Transcriptomic, Molecular And Cellular Phenotypes In Huntington's Disease Cag Knock-In Mice Across Multiple Genetic Backgrounds., Seth A Ament, Jocelynn R Pearl, Andrea Grindeland, Jason St Claire, John C Earls, Marina Kovalenko, Tammy Gillis, Jayalakshmi Mysore, James F Gusella, Jong-Min Lee, Seung Kwak, David Howland, Min Young Lee, David Baxter, Kelsey Scherler, Kai Wang, Donald Geman, Jeffrey B Carroll, Marcy E Macdonald, George Carlson, Vanessa C Wheeler, Nathan D Price, Leroy Hood Mar 2017

High Resolution Time-Course Mapping Of Early Transcriptomic, Molecular And Cellular Phenotypes In Huntington's Disease Cag Knock-In Mice Across Multiple Genetic Backgrounds., Seth A Ament, Jocelynn R Pearl, Andrea Grindeland, Jason St Claire, John C Earls, Marina Kovalenko, Tammy Gillis, Jayalakshmi Mysore, James F Gusella, Jong-Min Lee, Seung Kwak, David Howland, Min Young Lee, David Baxter, Kelsey Scherler, Kai Wang, Donald Geman, Jeffrey B Carroll, Marcy E Macdonald, George Carlson, Vanessa C Wheeler, Nathan D Price, Leroy Hood

Articles, Abstracts, and Reports

Huntington's disease is a dominantly inherited neurodegenerative disease caused by the expansion of a CAG repeat in the HTT gene. In addition to the length of the CAG expansion, factors such as genetic background have been shown to contribute to the age at onset of neurological symptoms. A central challenge in understanding the disease progression that leads from the HD mutation to massive cell death in the striatum is the ability to characterize the subtle and early functional consequences of the CAG expansion longitudinally. We used dense time course sampling between 4 and 20 postnatal weeks to characterize early transcriptomic, …


A Systematic Study Of Dysregulated Microrna In Type 2 Diabetes Mellitus., Yuqing He, Yuanlin Ding, Biyu Liang, Juanjuan Lin, Taek-Kyun Kim, Haibing Yu, Hanwei Hang, Kai Wang Feb 2017

A Systematic Study Of Dysregulated Microrna In Type 2 Diabetes Mellitus., Yuqing He, Yuanlin Ding, Biyu Liang, Juanjuan Lin, Taek-Kyun Kim, Haibing Yu, Hanwei Hang, Kai Wang

Articles, Abstracts, and Reports

MicroRNAs (miRNAs) are small noncoding RNAs that modulate the cellular transcriptome at the post-transcriptional level. miRNA plays important roles in different disease manifestation, including type 2 diabetes mellitus (T2DM). Many studies have characterized the changes of miRNAs in T2DM, a complex systematic disease; however, few studies have integrated these findings and explored the functional effects of the dysregulated miRNAs identified. To investigate the involvement of miRNAs in T2DM, we obtained and analyzed all relevant studies published prior to 18 October 2016 from various literature databases. From 59 independent studies that met the inclusion criteria, we identified 158 dysregulated miRNAs in …