Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Specialties

PDF

Brain

Providence

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Linkage, Whole Genome Sequence, And Biological Data Implicate Variants In Rab10 In Alzheimer's Disease Resilience., Perry G Ridge, Celeste M Karch, Simon Hsu, Ivan Arano, Craig C Teerlink, Mark T W Ebbert, Josue D Gonzalez Murcia, James M Farnham, Anna R Damato, Mariet Allen, Xue Wang, Oscar Harari, Victoria M Fernandez, Rita Guerreiro, Jose Bras, John Hardy, Ronald Munger, Maria Norton, Celeste Sassi, Andrew Singleton, Steven G Younkin, Dennis W Dickson, Todd E Golde, Nathan D Price, Nilüfer Ertekin-Taner, Carlos Cruchaga, Alison M Goate, Christopher Corcoran, Joann Tschanz, Lisa A Cannon-Albright, John S K Kauwe Nov 2017

Linkage, Whole Genome Sequence, And Biological Data Implicate Variants In Rab10 In Alzheimer's Disease Resilience., Perry G Ridge, Celeste M Karch, Simon Hsu, Ivan Arano, Craig C Teerlink, Mark T W Ebbert, Josue D Gonzalez Murcia, James M Farnham, Anna R Damato, Mariet Allen, Xue Wang, Oscar Harari, Victoria M Fernandez, Rita Guerreiro, Jose Bras, John Hardy, Ronald Munger, Maria Norton, Celeste Sassi, Andrew Singleton, Steven G Younkin, Dennis W Dickson, Todd E Golde, Nathan D Price, Nilüfer Ertekin-Taner, Carlos Cruchaga, Alison M Goate, Christopher Corcoran, Joann Tschanz, Lisa A Cannon-Albright, John S K Kauwe

Articles, Abstracts, and Reports

BACKGROUND: While age and the APOE ε4 allele are major risk factors for Alzheimer's disease (AD), a small percentage of individuals with these risk factors exhibit AD resilience by living well beyond 75 years of age without any clinical symptoms of cognitive decline.

METHODS: We used over 200 "AD resilient" individuals and an innovative, pedigree-based approach to identify genetic variants that segregate with AD resilience. First, we performed linkage analyses in pedigrees with resilient individuals and a statistical excess of AD deaths. Second, we used whole genome sequences to identify candidate SNPs in significant linkage regions. Third, we replicated SNPs …


Peripheral Huntingtin Silencing Does Not Ameliorate Central Signs Of Disease In The B6.Httq111/+ Mouse Model Of Huntington's Disease., Sydney R Coffey, Robert M Bragg, Shawn Minnig, Seth A Ament, Jeffrey P Cantle, Anne Glickenhaus, Daniel Shelnut, José M Carrillo, Dominic D Shuttleworth, Julie-Anne Rodier, Kimihiro Noguchi, C Frank Bennett, Nathan D Price, Holly B Kordasiewicz, Jeffrey B Carroll Jan 2017

Peripheral Huntingtin Silencing Does Not Ameliorate Central Signs Of Disease In The B6.Httq111/+ Mouse Model Of Huntington's Disease., Sydney R Coffey, Robert M Bragg, Shawn Minnig, Seth A Ament, Jeffrey P Cantle, Anne Glickenhaus, Daniel Shelnut, José M Carrillo, Dominic D Shuttleworth, Julie-Anne Rodier, Kimihiro Noguchi, C Frank Bennett, Nathan D Price, Holly B Kordasiewicz, Jeffrey B Carroll

Articles, Abstracts, and Reports

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease whose predominant neuropathological signature is the selective loss of medium spiny neurons in the striatum. Despite this selective neuropathology, the mutant protein (huntingtin) is found in virtually every cell so far studied, and, consequently, phenotypes are observed in a wide range of organ systems both inside and outside the central nervous system. We, and others, have suggested that peripheral dysfunction could contribute to the rate of progression of striatal phenotypes of HD. To test this hypothesis, we lowered levels of huntingtin by treating mice with antisense oligonucleotides (ASOs) targeting the murine …