Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Mice Exposed To Combined Chronic Low-Dose Irradiation And Modeled Microgravity Develop Long-Term Neurological Sequelae, Amber M. Paul, Eliah G. Overbey, William A. Da Silveira, Candice G.T. Tahimic, Sigrid S. Reinsch, Nathaniel Szewczyk, Seta Stanbouly, Charles Wang, Jonathan M. Galazka, Xiao Wen Mao Aug 2019

Mice Exposed To Combined Chronic Low-Dose Irradiation And Modeled Microgravity Develop Long-Term Neurological Sequelae, Amber M. Paul, Eliah G. Overbey, William A. Da Silveira, Candice G.T. Tahimic, Sigrid S. Reinsch, Nathaniel Szewczyk, Seta Stanbouly, Charles Wang, Jonathan M. Galazka, Xiao Wen Mao

Publications

Spaceflight poses many challenges for humans. Ground-based analogs typically focus on single parameters of spaceflight and their associated acute effects. This study assesses the long-term transcriptional effects following single and combination spaceflight analog conditions using the mouse model: simulated microgravity via hindlimb unloading (HLU) and/or low-dose γ-ray irradiation (LDR) for 21 days, followed by 4 months of readaptation. Changes in gene expression and epigenetic modifications in brain samples during readaptation were analyzed by whole transcriptome shotgun sequencing (RNA-seq) and reduced representation bisulfite sequencing (RRBS). The results showed minimal gene expression and cytosine methylation alterations at 4 months readaptation within single …


Reduced Gravity Contributes To Neutrophil To Lymphocyte Ratio Shifting And Promotion Of The Oxidative Stress Response, Amber M. Paul, Siddhita D. Mhatre, Egle Cekanaviciute, Ann-Sofie Schreurs, Candice G.T. Tahimic, Ruth K. Globus, Brian Crucian, Sharmila Bhattacharya May 2019

Reduced Gravity Contributes To Neutrophil To Lymphocyte Ratio Shifting And Promotion Of The Oxidative Stress Response, Amber M. Paul, Siddhita D. Mhatre, Egle Cekanaviciute, Ann-Sofie Schreurs, Candice G.T. Tahimic, Ruth K. Globus, Brian Crucian, Sharmila Bhattacharya

Publications

Spaceflight can cause immune system dysfunction, such as elevated white blood cells (WBC) and polymorphonuclear neutrophils (PMN), along with unchanged or reduced lymphocyte counts. A high PMN to lymphocyte ratio (NLR) can acts as a poor prognosis in cancer and a biomarker for subclinical inflammation however, the NLR has not been identified as a predictor of astronaut health during spaceflight. CBC data collected on board the International Space Station (ISS) was repurposed to determine the granulocyte to lymphocyte ratio (GLR) in humans and the NLR in rodents. The results displayed a progressive increase in GLR and NLR during spaceflight and …


Rising Rural Body-Mass Index Is The Main Driver Of The Global Obesity Epidemic In Adults, Con Burns, Tara Coppinger, Janette Walton, Et Al May 2019

Rising Rural Body-Mass Index Is The Main Driver Of The Global Obesity Epidemic In Adults, Con Burns, Tara Coppinger, Janette Walton, Et Al

Publications

Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities1,2. This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity3,4,5,6. Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to …


Effects Of Altered Gravity On The Central Nervous System Of Drosophila Melanogaster, Amber M. Paul, Siddhita Mhatre, Janani Iyer, Jhony A. Zavaleta, Ravikumar Hosamani Mar 2019

Effects Of Altered Gravity On The Central Nervous System Of Drosophila Melanogaster, Amber M. Paul, Siddhita Mhatre, Janani Iyer, Jhony A. Zavaleta, Ravikumar Hosamani

Publications

A comprehensive understanding of the effects of spaceflight and altered gravity on human physiology is necessary for continued human space exploration and long-term space habitation. Spaceflight includes multiple factors such as microgravity, hyper gravity, ionizing radiation, physiological stress, and disrupted circadian rhythms and these have been shown to contribute to pathophysiological responses that target immunity, bone and muscle integrity, cardiovascular and nervous systems. In terrestrial conditions, some of these factors can lead to cancer and neuroimmunological disorders. In this study, we used a well-established spaceflight model organism, Drosophila melanogaster, to assess spaceflight-associated changes in the nervous system. We hypothesize that …