Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Specialties

PDF

Sanders-Brown Center on Aging Faculty Publications

Hippocampus

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Csf Protein Changes Associated With Hippocampal Sclerosis Risk Gene Variants Highlight Impact Of Grn/Pgrn, David W. Fardo, Yuriko Katsumata, John S. K. Kauwe, Yuetiva Deming, Oscar Harari, Carlos Cruchaga, Alzheimer’S Disease Neuroimaging Initiative, Peter T. Nelson Apr 2017

Csf Protein Changes Associated With Hippocampal Sclerosis Risk Gene Variants Highlight Impact Of Grn/Pgrn, David W. Fardo, Yuriko Katsumata, John S. K. Kauwe, Yuetiva Deming, Oscar Harari, Carlos Cruchaga, Alzheimer’S Disease Neuroimaging Initiative, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

Objective—Hippocampal sclerosis of aging (HS-Aging) is a common cause of dementia in older adults. We tested the variability in cerebrospinal fluid (CSF) proteins associated with previously identified HS-Aging risk single nucleotide polymorphisms (SNPs).

Methods—Alzheimer’s Disease Neuroimaging Initiative cohort (ADNI; n=237) data, combining both multiplexed proteomics CSF and genotype data, were used to assess the association between CSF analytes and risk SNPs in four genes (SNPs): GRN (rs5848), TMEM106B (rs1990622), ABCC9 (rs704180), and KCNMB2 (rs9637454). For controls, non-HS-Aging SNPs in APOE (rs429358/rs7412) and MAPT (rs8070723) were also analyzed against Aβ1-42 and total tau CSF analytes.

Results—The GRN risk …


The Tnfα-Transgenic Rat: Hippocampal Synaptic Integrity, Cognition, Function, And Post-Ischemic Cell Loss, L. Creed Pettigrew, Richard J. Kryscio, Christopher M. Norris May 2016

The Tnfα-Transgenic Rat: Hippocampal Synaptic Integrity, Cognition, Function, And Post-Ischemic Cell Loss, L. Creed Pettigrew, Richard J. Kryscio, Christopher M. Norris

Sanders-Brown Center on Aging Faculty Publications

The cytokine, tumor necrosis factor α (TNFα), is a key regulator of neuroinflammation linked to numerous neurodegenerative conditions and diseases. The present study used transgenic rats that overexpress a murine TNFα gene, under the control of its own promoter, to investigate the impact of chronically elevated TNFα on hippocampal synaptic function. Neuronal viability and cognitive recovery in TNFα Tg rats were also determined following an ischemic insult arising from reversible middle cerebral artery occlusion (MCAO). Basal CA3-CA1 synaptic strength, recorded in acute brain slices, was not significantly different between eight-week-old TNFα Tg rats and non-Tg rats. In contrast, slices from …


Early Stage Drug Treatment That Normalizes Proinflammatory Cytokine Production Attenuates Synaptic Dysfunction In A Mouse Model That Exhibits Age-Dependent Progression Of Alzheimer's Disease-Related Pathology, Adam D. Bachstetter, Christopher M. Norris, Pradoldej Sompol, Donna M. Wilcock, Danielle Goulding, Janna H. Neltner, Daret St. Clair, D. Martin Watterson, Linda J. Van Eldik Jul 2012

Early Stage Drug Treatment That Normalizes Proinflammatory Cytokine Production Attenuates Synaptic Dysfunction In A Mouse Model That Exhibits Age-Dependent Progression Of Alzheimer's Disease-Related Pathology, Adam D. Bachstetter, Christopher M. Norris, Pradoldej Sompol, Donna M. Wilcock, Danielle Goulding, Janna H. Neltner, Daret St. Clair, D. Martin Watterson, Linda J. Van Eldik

Sanders-Brown Center on Aging Faculty Publications

Overproduction of proinflammatory cytokines in the CNS has been implicated as a key contributor to pathophysiology progression in Alzheimer's disease (AD), and extensive studies with animal models have shown that selective suppression of excessive glial proinflammatory cytokines can improve neurologic outcomes. The prior art, therefore, raises the logical postulation that intervention with drugs targeting dysregulated glial proinflammatory cytokine production might be effective disease-modifying therapeutics if used in the appropriate biological time window. To test the hypothesis that early stage intervention with such drugs might be therapeutically beneficial, we examined the impact of intervention with MW01-2-151SRM (MW-151), an experimental therapeutic that …