Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Editorial For The Genetics Of Alzheimer’S Disease Special Issue: October 2021, Laura Ibanez, Justin B. Miller Nov 2021

Editorial For The Genetics Of Alzheimer’S Disease Special Issue: October 2021, Laura Ibanez, Justin B. Miller

Sanders-Brown Center on Aging Faculty Publications

No abstract provided.


Pairwise Correlation Analysis Of The Alzheimer’S Disease Neuroimaging Initiative (Adni) Dataset Reveals Significant Feature Correlation, Erik D. Huckvale, Matthew W. Hodgman, Brianna B. Greenwood, Devorah O. Stucki, Katrisa M. Ward, Mark T. W. Ebbert, John S. K. Kauwe, The Alzheimer’S Disease Neuroimaging Initiative, The Alzheimer’S Disease Metabolomics Consortium, Justin B. Miller Oct 2021

Pairwise Correlation Analysis Of The Alzheimer’S Disease Neuroimaging Initiative (Adni) Dataset Reveals Significant Feature Correlation, Erik D. Huckvale, Matthew W. Hodgman, Brianna B. Greenwood, Devorah O. Stucki, Katrisa M. Ward, Mark T. W. Ebbert, John S. K. Kauwe, The Alzheimer’S Disease Neuroimaging Initiative, The Alzheimer’S Disease Metabolomics Consortium, Justin B. Miller

Sanders-Brown Center on Aging Faculty Publications

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) contains extensive patient measurements (e.g., magnetic resonance imaging [MRI], biometrics, RNA expression, etc.) from Alzheimer’s disease (AD) cases and controls that have recently been used by machine learning algorithms to evaluate AD onset and progression. While using a variety of biomarkers is essential to AD research, highly correlated input features can significantly decrease machine learning model generalizability and performance. Additionally, redundant features unnecessarily increase computational time and resources necessary to train predictive models. Therefore, we used 49,288 biomarkers and 793,600 extracted MRI features to assess feature correlation within the ADNI dataset to determine the …


Random Forest-Integrated Analysis In Ad And Late Brain Transcriptome-Wide Data To Identify Disease-Specific Gene Expression, Xinxing Wu, Chong Peng, Peter T. Nelson, Qiang Cheng Sep 2021

Random Forest-Integrated Analysis In Ad And Late Brain Transcriptome-Wide Data To Identify Disease-Specific Gene Expression, Xinxing Wu, Chong Peng, Peter T. Nelson, Qiang Cheng

Sanders-Brown Center on Aging Faculty Publications

Alzheimer's disease (AD) is a complex neurodegenerative disorder that affects thinking, memory, and behavior. Limbic-predominant age-related TDP-43 encephalopathy (LATE) is a recently identified common neurodegenerative disease that mimics the clinical symptoms of AD. The development of drugs to prevent or treat these neurodegenerative diseases has been slow, partly because the genes associated with these diseases are incompletely understood. A notable hindrance from data analysis perspective is that, usually, the clinical samples for patients and controls are highly imbalanced, thus rendering it challenging to apply most existing machine learning algorithms to directly analyze such datasets. Meeting this data analysis challenge is …


Broad Kinase Inhibition Mitigates Early Neuronal Dysfunction In Tauopathy, Shon A. Koren, Matthew J. Hamm, Ryan Cloyd, Sarah N. Fontaine, Emad Chishti, Chiara Lanzillotta, Jennifer Rodriguez-Rivera, Alexandria Ingram, Michelle Bell, Sara M. Galvis-Escobar, Nicholas Zulia, Fabio Di Domenico, Duc Duong, Nicholas T. Seyfried, David K. Powell, Moriel Vandsburger, Tal Frolinger, Anika M. S. Hartz, John Koren Iii, Jeffrey M. Axten, Nicholas J. Laping, Jose F. Abisambra Jan 2021

Broad Kinase Inhibition Mitigates Early Neuronal Dysfunction In Tauopathy, Shon A. Koren, Matthew J. Hamm, Ryan Cloyd, Sarah N. Fontaine, Emad Chishti, Chiara Lanzillotta, Jennifer Rodriguez-Rivera, Alexandria Ingram, Michelle Bell, Sara M. Galvis-Escobar, Nicholas Zulia, Fabio Di Domenico, Duc Duong, Nicholas T. Seyfried, David K. Powell, Moriel Vandsburger, Tal Frolinger, Anika M. S. Hartz, John Koren Iii, Jeffrey M. Axten, Nicholas J. Laping, Jose F. Abisambra

Sanders-Brown Center on Aging Faculty Publications

Tauopathies are a group of more than twenty known disorders that involve progressive neurodegeneration, cognitive decline and pathological tau accumulation. Current therapeutic strategies provide only limited, late-stage symptomatic treatment. This is partly due to lack of understanding of the molecular mechanisms linking tau and cellular dysfunction, especially during the early stages of disease progression. In this study, we treated early stage tau transgenic mice with a multi-target kinase inhibitor to identify novel substrates that contribute to cognitive impairment and exhibit therapeutic potential. Drug treatment significantly ameliorated brain atrophy and cognitive function as determined by behavioral testing and a sensitive imaging …


Arginase 1 Insufficiency Precipitates Amyloid-Β Deposition And Hastens Behavioral Impairment In A Mouse Model Of Amyloidosis, Chao Ma, Jerry B. Hunt, Maj-Linda B. Selenica, Awa Sanneh, Leslie A. Sandusky-Beltran, Mallory Watler, Rana Daas, Andrii Kovalenko, Huimin Liang, Devon Placides, Chuanhai Cao, Xiaoyang Lin, Michael B. Orr, Bei Zhang, John C. Gensel, David J. Feola, Marcia N. Gordon, Dave Morgan, Paula C. Bickford, Daniel C. Lee Jan 2021

Arginase 1 Insufficiency Precipitates Amyloid-Β Deposition And Hastens Behavioral Impairment In A Mouse Model Of Amyloidosis, Chao Ma, Jerry B. Hunt, Maj-Linda B. Selenica, Awa Sanneh, Leslie A. Sandusky-Beltran, Mallory Watler, Rana Daas, Andrii Kovalenko, Huimin Liang, Devon Placides, Chuanhai Cao, Xiaoyang Lin, Michael B. Orr, Bei Zhang, John C. Gensel, David J. Feola, Marcia N. Gordon, Dave Morgan, Paula C. Bickford, Daniel C. Lee

Sanders-Brown Center on Aging Faculty Publications

Alzheimer’s disease (AD) includes several hallmarks comprised of amyloid-β (Aβ) deposition, tau neuropathology, inflammation, and memory impairment. Brain metabolism becomes uncoupled due to aging and other AD risk factors, which ultimately lead to impaired protein clearance and aggregation. Increasing evidence indicates a role of arginine metabolism in AD, where arginases are key enzymes in neurons and glia capable of depleting arginine and producing ornithine and polyamines. However, currently, it remains unknown if the reduction of arginase 1 (Arg1) in myeloid cell impacts amyloidosis. Herein, we produced haploinsufficiency of Arg1 by the hemizygous deletion in myeloid cells using Arg1 …