Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Editorial: Roles Of Sleep Disruption And Circadian Rhythm Alterations On Neurodegeneration And Alzheimer's Disease, Marilyn J. Duncan, Sigrid C. Veasey, Phyllis Zee Sep 2021

Editorial: Roles Of Sleep Disruption And Circadian Rhythm Alterations On Neurodegeneration And Alzheimer's Disease, Marilyn J. Duncan, Sigrid C. Veasey, Phyllis Zee

Neuroscience Faculty Publications

No abstract provided.


White Matter Hyperintensity Volume And Location: Associations With Wm Microstructure, Brain Iron, And Cerebral Perfusion, Christopher E. Bauer, Valentinos Zachariou, Elayna R. Seago, Brian T. Gold Jul 2021

White Matter Hyperintensity Volume And Location: Associations With Wm Microstructure, Brain Iron, And Cerebral Perfusion, Christopher E. Bauer, Valentinos Zachariou, Elayna R. Seago, Brian T. Gold

Neuroscience Faculty Publications

Cerebral white matter hyperintensities (WMHs) represent macrostructural brain damage associated with various etiologies. However, the relative contributions of various etiologies to WMH volume, as assessed via different neuroimaging measures, is not well-understood. Here, we explored associations between three potential early markers of white matter hyperintensity volume. Specifically, the unique variance in total and regional WMH volumes accounted for by white matter microstructure, brain iron concentration and cerebral blood flow (CBF) was assessed. Regional volumes explored were periventricular and deep regions. Eighty healthy older adults (ages 60–86) were scanned at 3 Tesla MRI using fluid-attenuated inversion recovery, diffusion tensor imaging (DTI), …


Healthy Dietary Intake Moderates The Effects Of Age On Brain Iron Concentration And Working Memory Performance, Valentinos Zachariou, Christopher E. Bauer, Elayna R. Seago, Georgia Panayiotou, Edward D. Hall, D. Allan Butterfield, Brian T. Gold Jun 2021

Healthy Dietary Intake Moderates The Effects Of Age On Brain Iron Concentration And Working Memory Performance, Valentinos Zachariou, Christopher E. Bauer, Elayna R. Seago, Georgia Panayiotou, Edward D. Hall, D. Allan Butterfield, Brian T. Gold

Neuroscience Faculty Publications

Age-related brain iron accumulation is linked with oxidative stress, neurodegeneration and cognitive decline. Certain nutrients can reduce brain iron concentration in animal models, however, this association is not well established in humans. Moreover, it remains unknown if nutrition can moderate the effects of age on brain iron concentration and/or cognition. Here, we explored these issues in a sample of 73 healthy older adults (61-86 years old), while controlling for several factors such as age, gender, years of education, physical fitness and alcohol-intake. Quantitative susceptibility mapping was used for assessment of brain iron concentration and participants performed an N-Back paradigm to …


Inflammatory Regulation Of Cns Barriers After Traumatic Brain Injury: A Tale Directed By Interleukin-1, Colleen N. Bodnar, James B. Watson, Emma K. Higgins, Ning Quan, Adam D. Bachstetter May 2021

Inflammatory Regulation Of Cns Barriers After Traumatic Brain Injury: A Tale Directed By Interleukin-1, Colleen N. Bodnar, James B. Watson, Emma K. Higgins, Ning Quan, Adam D. Bachstetter

Neuroscience Faculty Publications

Several barriers separate the central nervous system (CNS) from the rest of the body. These barriers are essential for regulating the movement of fluid, ions, molecules, and immune cells into and out of the brain parenchyma. Each CNS barrier is unique and highly dynamic. Endothelial cells, epithelial cells, pericytes, astrocytes, and other cellular constituents each have intricate functions that are essential to sustain the brain’s health. Along with damaging neurons, a traumatic brain injury (TBI) also directly insults the CNS barrier-forming cells. Disruption to the barriers first occurs by physical damage to the cells, called the primary injury. Subsequently, during …


Regional N-Glycan And Lipid Analysis From Tissues Using Maldi-Mass Spectrometry Imaging, Alexandra E. Stanback, Lindsey R. Conroy, Lyndsay E. A. Young, Tara R. Hawkinson, Kia H. Markussen, Harrison A. Clarke, Derek B. Allison, Ramon C. Sun Jan 2021

Regional N-Glycan And Lipid Analysis From Tissues Using Maldi-Mass Spectrometry Imaging, Alexandra E. Stanback, Lindsey R. Conroy, Lyndsay E. A. Young, Tara R. Hawkinson, Kia H. Markussen, Harrison A. Clarke, Derek B. Allison, Ramon C. Sun

Neuroscience Faculty Publications

N-glycans and lipids are structural metabolites that play important roles in cellular processes. Both show unique regional distribution in tissues; therefore, spatial analyses of these metabolites are crucial to our understanding of cellular physiology. Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) is an innovative technique that enables in situ detection of analytes with spatial distribution. This workflow details a MALDI-MSI protocol for the spatial profiling of N-glycans and lipids from tissues following application of enzyme and MALDI matrix.

For complete details on the use and execution of this protocol, please refer to Drake et al. (2018) and Andres et al. (2020).