Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Specialties

PDF

Chapman University

Targeted therapy

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Targeting Neuronal Nitric Oxide Synthase (Nnos) For Melanoma Treatment, Shirley Tong May 2022

Targeting Neuronal Nitric Oxide Synthase (Nnos) For Melanoma Treatment, Shirley Tong

Pharmaceutical Sciences (PhD) Dissertations

Human cutaneous melanoma is the most aggressive form of skin cancer and the incidence rates have continued to increase over the years. Neuronal nitric oxide synthase (nNOS) produces nitric oxide (NO) has been found to be overexpressed in human melanoma and the expression of nNOS is induced by interferon-gamma (IFN-γ). In our studies, nNOS has been implicated in IFN-γ-stimulated melanoma progression and the inhibition of nNOS using novel inhibitors effectively inhibited IFN-γ-stimulated tumor growth in a xenograft mouse model. Programmed death-ligand 1 (PD-L1) is overexpressed in melanoma and plays an important role in suppressing the immune system 12-14. Our …


Activity Of Distinct Growth Factor Receptor Network Components In Breast Tumors Uncovers Two Biologically Relevant Subtypes, Moom Roosan, Shelley M. Macneil, David F. Jenkins, Gajendra Shrestha, Sydney R. Wyatt, Jasmine A. Mcquerry, Stephen R. Piccolo, Laura M. Heiser, Joe W. Gray, W. Evan Johnson, Andrea H. Bild Apr 2017

Activity Of Distinct Growth Factor Receptor Network Components In Breast Tumors Uncovers Two Biologically Relevant Subtypes, Moom Roosan, Shelley M. Macneil, David F. Jenkins, Gajendra Shrestha, Sydney R. Wyatt, Jasmine A. Mcquerry, Stephen R. Piccolo, Laura M. Heiser, Joe W. Gray, W. Evan Johnson, Andrea H. Bild

Pharmacy Faculty Articles and Research

Background
The growth factor receptor network (GFRN) plays a significant role in driving key oncogenic processes. However, assessment of global GFRN activity is challenging due to complex crosstalk among GFRN components, or pathways, and the inability to study complex signaling networks in patient tumors. Here, pathway-specific genomic signatures were used to interrogate GFRN activity in breast tumors and the consequent phenotypic impact of GRFN activity patterns.

Methods
Novel pathway signatures were generated in human primary mammary epithelial cells by overexpressing key genes from GFRN pathways (HER2, IGF1R, AKT1, EGFR, KRAS (G12V), RAF1, BAD). The pathway analysis toolkit Adaptive Signature Selection …