Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Life Sciences

Pulmonary Function And Blood Dna Methylation: A Multiancestry Epigenome-Wide Association Meta-Analysis, Mikyeong Lee, Tianxiao Huan, Daniel L. Mccartney, Geetha Chittoor, Maaike De Vries, Lies Lahousse, Jennifer N. Nguyen, Jennifer A. Brody, Juan Castillo-Fernandez, Natalie Terzikhan, Cancan Qi, Roby Joehanes, Josine L. Min, Gordon J. Smilnak, Jessica R. Shaw, Chen Xi Yang, Elena Colicino, Thanh T. Hoang, Mairead L. Bermingham, Hanfei Xu, Anne E. Justice, Cheng-Jian Xu, Stephen S. Rich, Simon R. Cox, Judith M. Vonk, Ivana Prokić, Nona Sotoodehnia, Pei-Chien Tsai, Joel D. Schwartz, Janice M. Leung, Sinjini Sikdar, Rosie M. Walker, Sarah E. Harris, Diana A. Van Der Plaat, David J. Van Den Berg, Traci M. Bartz, Tim D. Spector, Pantel S. Vokonas, Riccardo E. Marioni, Adele M. Taylor, Yongmei Liu, R. Graham Barr, Leslie A. Lange, Andrea A. Baccarelli, Ma'en Obeidat, Myriam Fornage, Tianyuan Wang, James M. Ward, Alison A. Motsinger-Reif, Gibran Hemani, Gerard H. Koppelman, Jordana T. Bell, Sina A. Gharib, Guy Brusselle, H. Marike Boezen, Kari E. North, Daniel Levy, Kathryn L. Evans, Josée Dupris, Charles E. Breeze, Ani Manichaikul, Stephanie J. London Jan 2022

Pulmonary Function And Blood Dna Methylation: A Multiancestry Epigenome-Wide Association Meta-Analysis, Mikyeong Lee, Tianxiao Huan, Daniel L. Mccartney, Geetha Chittoor, Maaike De Vries, Lies Lahousse, Jennifer N. Nguyen, Jennifer A. Brody, Juan Castillo-Fernandez, Natalie Terzikhan, Cancan Qi, Roby Joehanes, Josine L. Min, Gordon J. Smilnak, Jessica R. Shaw, Chen Xi Yang, Elena Colicino, Thanh T. Hoang, Mairead L. Bermingham, Hanfei Xu, Anne E. Justice, Cheng-Jian Xu, Stephen S. Rich, Simon R. Cox, Judith M. Vonk, Ivana Prokić, Nona Sotoodehnia, Pei-Chien Tsai, Joel D. Schwartz, Janice M. Leung, Sinjini Sikdar, Rosie M. Walker, Sarah E. Harris, Diana A. Van Der Plaat, David J. Van Den Berg, Traci M. Bartz, Tim D. Spector, Pantel S. Vokonas, Riccardo E. Marioni, Adele M. Taylor, Yongmei Liu, R. Graham Barr, Leslie A. Lange, Andrea A. Baccarelli, Ma'en Obeidat, Myriam Fornage, Tianyuan Wang, James M. Ward, Alison A. Motsinger-Reif, Gibran Hemani, Gerard H. Koppelman, Jordana T. Bell, Sina A. Gharib, Guy Brusselle, H. Marike Boezen, Kari E. North, Daniel Levy, Kathryn L. Evans, Josée Dupris, Charles E. Breeze, Ani Manichaikul, Stephanie J. London

Mathematics & Statistics Faculty Publications

Rationale: Methylation integrates factors present at birth and modifiable across the lifespan that can influence pulmonary function. Studies are limited in scope and replication.

Objectives: To conduct large-scale epigenome-wide meta-analyses of blood DNA methylation and pulmonary function.

Methods: Twelve cohorts analyzed associations of methylation at cytosine-phosphate-guanine probes (CpGs), using Illumina 450K or EPIC/850K arrays, with FEV1, FVC, and FEV1/FVC. We performed multiancestry epigenome-wide meta-analyses (total of 17,503 individuals; 14,761 European, 2,549 African, and 193 Hispanic/Latino ancestries) and interpreted results using integrative epigenomics.

Measurements and Main Results: We identified 1,267 CpGs (1,042 genes) differentially methylated (false discovery …


Microrna Regulation Of Epigenetic Modifiers In Breast Cancer, Brock Humphries, Zhishan Wang, Chengfeng Yang Jun 2019

Microrna Regulation Of Epigenetic Modifiers In Breast Cancer, Brock Humphries, Zhishan Wang, Chengfeng Yang

Toxicology and Cancer Biology Faculty Publications

Epigenetics refers to the heritable changes in gene expression without a change in the DNA sequence itself. Two of these major changes include aberrant DNA methylation as well as changes to histone modification patterns. Alterations to the epigenome can drive expression of oncogenes and suppression of tumor suppressors, resulting in tumorigenesis and cancer progression. In addition to modifications of the epigenome, microRNA (miRNA) dysregulation is also a hallmark for cancer initiation and metastasis. Advances in our understanding of cancer biology demonstrate that alterations in the epigenome are not only a major cause of miRNA dysregulation in cancer, but that miRNAs …


Dna Methylation By Restriction Modification Systems Affects The Global Transcriptome Profile In Borrelia Burgdorferi, Timothey Casselli, Yvonne Tourand, Adam Scheidegger, William K. Arnold, Anna Proulx, Brian Stevenson, Catherine A. Brissette Dec 2018

Dna Methylation By Restriction Modification Systems Affects The Global Transcriptome Profile In Borrelia Burgdorferi, Timothey Casselli, Yvonne Tourand, Adam Scheidegger, William K. Arnold, Anna Proulx, Brian Stevenson, Catherine A. Brissette

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Prokaryote restriction modification (RM) systems serve to protect bacteria from potentially detrimental foreign DNA. Recent evidence suggests that DNA methylation by the methyltransferase (MTase) components of RM systems can also have effects on transcriptome profiles. The type strain of the causative agent of Lyme disease, Borrelia burgdorferi B31, possesses two RM systems with N6-methyladenosine (m6A) MTase activity, which are encoded by the bbe02 gene located on linear plasmid lp25 and bbq67 on lp56. The specific recognition and/or methylation sequences had not been identified for either of these B. burgdorferi MTases, and it was not previously known whether these RM …


Aged Murine Hematopoietic Stem Cells Drive Aging-Associate Immune Remodeling, Hanna Leins, Medhanie Mulaw, Karina Eiwen, Vadim Sakk, Ying Liang, Michael Denkinger, Hartmut Geiger, Reinhold Schirmbeck Aug 2018

Aged Murine Hematopoietic Stem Cells Drive Aging-Associate Immune Remodeling, Hanna Leins, Medhanie Mulaw, Karina Eiwen, Vadim Sakk, Ying Liang, Michael Denkinger, Hartmut Geiger, Reinhold Schirmbeck

Toxicology and Cancer Biology Faculty Publications

Aging-associated remodeling of the immune system impairs its functional integrity and contributes to increased morbidity and mortality in the elderly. Aging of hematopoietic stem cells (HSCs), from which all cells of the adaptive immune system ultimately originate, might play a crucial role in the remodeling of the aged immune system. We recently reported that aging of HSCs is, in part, driven by elevated activity of the small RhoGTPase Cdc42 and that aged HSCs can be rejuvenated in vitro by inhibition of the elevated Cdc42 activity in aged HSCs with the pharmacological compound CASIN. To study the quality of immune systems …


Maternal Engineered Nanomaterial Inhalation During Gestation Alters The Fetal Transcriptome, P.A. Stapleton, Q.A. Hathaway, C.E. Nichols, A.B. Abukabda, M.V. Pinti, D.L. Shepherd, C.R. Mcbride, J. Yi, V.C. Castranova, J.M Hollander, Timothy Robert Nurkiewicz Jan 2018

Maternal Engineered Nanomaterial Inhalation During Gestation Alters The Fetal Transcriptome, P.A. Stapleton, Q.A. Hathaway, C.E. Nichols, A.B. Abukabda, M.V. Pinti, D.L. Shepherd, C.R. Mcbride, J. Yi, V.C. Castranova, J.M Hollander, Timothy Robert Nurkiewicz

Faculty & Staff Scholarship

Background: The integration of engineered nanomaterials (ENM) is well-established and widespread in clinical, commercial, and domestic applications. Cardiovascular dysfunctions have been reported in adult populations after exposure to a variety of ENM. As the diversity of these exposures continues to increase, the fetal ramifications of maternal exposures have yet to be determined. We, and others, have explored the consequences of ENM inhalation during gestation and identified many cardiovascular and metabolic outcomes in the F1 generation. The purpose of these studies was to identify genetic alterations in the F1 generation of Sprague-Dawley rats that result from maternal ENM inhalation during gestation. …


Epigenetic Impact Of Endocrine Disrupting Chemicals On Lipid Homeostasis And Atherosclerosis: A Pregnane X Receptor-Centric View, Robert N. Helsley, Changcheng Zhou Oct 2017

Epigenetic Impact Of Endocrine Disrupting Chemicals On Lipid Homeostasis And Atherosclerosis: A Pregnane X Receptor-Centric View, Robert N. Helsley, Changcheng Zhou

Pharmacology and Nutritional Sciences Faculty Publications

Despite the major advances in developing diagnostic techniques and effective treatments, atherosclerotic cardiovascular disease (CVD) is still the leading cause of mortality and morbidity worldwide. While considerable progress has been achieved to identify gene variations and environmental factors that contribute to CVD, much less is known about the role of “gene–environment interactions” in predisposing individuals to CVD. Our chemical environment has significantly changed in the last few decades, and there are more than 100,000 synthetic chemicals in the market. Recent large-scale human population studies have associated exposure to certain chemicals including many endocrine disrupting chemicals (EDCs) with increased CVD risk, …


Cpt1a Methylation Is Associated With Plasma Adiponectin, S. Aslibekyan, A. N. Do, H. Xu, S. Li, M. R. Irvin, D Zhi, H. K. Tiwari, D. M. Absher, A. R. Shuldiner, T. Zhang, W. Chen, K. Tanner, C. Hong, B. D. Mitchell, G. Berenson, Donna K. Arnett Mar 2017

Cpt1a Methylation Is Associated With Plasma Adiponectin, S. Aslibekyan, A. N. Do, H. Xu, S. Li, M. R. Irvin, D Zhi, H. K. Tiwari, D. M. Absher, A. R. Shuldiner, T. Zhang, W. Chen, K. Tanner, C. Hong, B. D. Mitchell, G. Berenson, Donna K. Arnett

Epidemiology and Environmental Health Faculty Publications

Background and Aims—Adiponectin, an adipose-secreted protein that has been linked to insulin sensitivity, plasma lipids, and inflammatory patterns, is an established biomarker for metabolic health. Despite clinical relevance and high heritability, the determinants of plasma adiponectin levels remain poorly understood.

Methods and Results—We conducted the first epigenome-wide cross-sectional study of adiponectin levels using methylation data on 368,051 cytosine-phosphate-guanine (CpG) sites in CD4+ T-cells from the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN, n= 991). We fit linear mixed models, adjusting for age, sex, study site, T-cell purity, and family. We have identified a positive association (regression …


A Novel Role Of Silibinin As A Putative Epigenetic Modulator In Human Prostate Carcinoma, Ioannis Anestopoulos, Aristeidis P. Sfakianos, Rodrigo Franco, Katerina Chlichlia, Mihalis I. Panayiotidis, David J. Kroll, Aglaia Pappa Jan 2017

A Novel Role Of Silibinin As A Putative Epigenetic Modulator In Human Prostate Carcinoma, Ioannis Anestopoulos, Aristeidis P. Sfakianos, Rodrigo Franco, Katerina Chlichlia, Mihalis I. Panayiotidis, David J. Kroll, Aglaia Pappa

School of Veterinary and Biomedical Sciences: Faculty Publications

Silibinin, extracted from milk thistle (Silybum marianum L.), has exhibited considerable preclinical activity against prostate carcinoma. Its antitumor and chemopreventive activities have been associated with diverse effects on cell cycle, apoptosis, and receptor-dependent mitogenic signaling pathways. Here we hypothesized that silibinin’s pleiotropic effects may reflect its interference with epigenetic mechanisms in human prostate cancer cells. More specifically, we have demonstrated that silibinin reduces gene expression levels of the Polycomb Repressive Complex 2 (PRC2) members Enhancer of Zeste Homolog 2 (EZH2), Suppressor of Zeste Homolog 12 (SUZ12), and Embryonic Ectoderm Development (EED) in DU145 and PC3 human prostate cancer cells, …


Gene Expression Profiling In An Alzheimer's Disease Mouse Model, Matthew R. Dalton Apr 2016

Gene Expression Profiling In An Alzheimer's Disease Mouse Model, Matthew R. Dalton

Senior Honors Theses

Explaining precisely how Alzheimer’s disease (AD)—the world’s most common form of dementia—materializes in the human brain has proven to be one of the most elusive ends in modern medicine. Progressive memory loss, neurodegeneration, and the presence of abnormal protein aggregates of amyloid-beta (Aβ) and neurofibrillary tangles (NFT) characterize this disease. Genome sequencing provides researchers with the ability to better identify disease-related changes in gene expression, some of which may play a role in the initiation and progression toward the AD-like state. Intimate interactions between tissues have been observed in many diseases, particularly between the brain and blood. This analysis seeks …


Monkey-Based Research On Human Disease: The Implications Of Genetic Differences, Jarrod Bailey Nov 2014

Monkey-Based Research On Human Disease: The Implications Of Genetic Differences, Jarrod Bailey

Laboratory Experiments Collection

Assertions that the use of monkeys to investigate human diseases is valid scientifically are frequently based on a reported 90–93% genetic similarity between the species. Critical analyses of the relevance of monkey studies to human biology, however, indicate that this genetic similarity does not result in sufficient physiological similarity for monkeys to constitute good models for research, and that monkey data do not translate well to progress in clinical practice for humans. Salient examples include the failure of new drugs in clinical trials, the highly different infectivity and pathology of SIV/HIV, and poor extrapolation of research on Alzheimer’s disease, Parkinson’s …


Intronic Non-Cg Dna Hydroxymethylation And Alternative Mrna Splicing In Honey Bees, Pablo Cingolani, Xiaoyi Cao, Radhika S. Khetani, Chieh-Chun Chen, Melissa Coon, Alya'a Sammak, Aliccia Bollig-Fischer, Susan Land, Yun Huang, Matthew E. Hudson, Mark D. Garfinkel, Sheng Zhong, Gene E. Robinson, Douglas M. Ruden Jan 2013

Intronic Non-Cg Dna Hydroxymethylation And Alternative Mrna Splicing In Honey Bees, Pablo Cingolani, Xiaoyi Cao, Radhika S. Khetani, Chieh-Chun Chen, Melissa Coon, Alya'a Sammak, Aliccia Bollig-Fischer, Susan Land, Yun Huang, Matthew E. Hudson, Mark D. Garfinkel, Sheng Zhong, Gene E. Robinson, Douglas M. Ruden

Wayne State University Associated BioMed Central Scholarship

Abstract

Background

Previous whole-genome shotgun bisulfite sequencing experiments showed that DNA cytosine methylation in the honey bee (Apis mellifera) is almost exclusively at CG dinucleotides in exons. However, the most commonly used method, bisulfite sequencing, cannot distinguish 5-methylcytosine from 5-hydroxymethylcytosine, an oxidized form of 5-methylcytosine that is catalyzed by the TET family of dioxygenases. Furthermore, some analysis software programs under-represent non-CG DNA methylation and hydryoxymethylation for a variety of reasons. Therefore, we used an unbiased analysis of bisulfite sequencing data combined with molecular and bioinformatics approaches to distinguish 5-methylcytosine from 5-hydroxymethylcytosine. By doing this, we have performed the first whole …


The Role Of Epigenetics In Evolution: The Extended Synthesis, Aaron W. Schrey, Christina L. Richards, Victoria Meller, Vincent Sollars, Douglas M. Ruden Jan 2012

The Role Of Epigenetics In Evolution: The Extended Synthesis, Aaron W. Schrey, Christina L. Richards, Victoria Meller, Vincent Sollars, Douglas M. Ruden

Integrative Biology Faculty and Staff Publications

No abstract provided.


Epigenetic Variation May Compensate For Decreased Genetic Variation With Introductions: A Case Study Using House Sparrows (Passer Domesticus) On Two Continents, Aaron W. Schrey, Courtney A. C. Coon, Michael T. Grispo, Mohammed Awad, Titus Imboma, Earl D. Mccoy, Henry R. Mushinsky, Christina L. Richards, Lynn B. Martin Jan 2012

Epigenetic Variation May Compensate For Decreased Genetic Variation With Introductions: A Case Study Using House Sparrows (Passer Domesticus) On Two Continents, Aaron W. Schrey, Courtney A. C. Coon, Michael T. Grispo, Mohammed Awad, Titus Imboma, Earl D. Mccoy, Henry R. Mushinsky, Christina L. Richards, Lynn B. Martin

Integrative Biology Faculty and Staff Publications

Epigenetic mechanisms impact several phenotypic traits and may be important for ecology and evolution. The introduced house sparrow (Passer domesticus) exhibits extensive phenotypic variation among and within populations. We screened methylation in populations from Kenya and Florida to determine if methylation varied among populations, varied with introduction history (Kenyan invasion < 50 years old, Florida invasion ~150 years old), and could potentially compensate for decrease genetic variation with introductions. While recent literature has speculated on the importance of epigenetic effects for biological invasions, this is the first such study among wild vertebrates. Methylation was more frequent in Nairobi, and outlier loci suggest that populations may be differentiated. Methylation diversity was similar between populations, in spite of known lower genetic diversity in Nairobi, which suggests that epigenetic variation may compensate for decreased genetic diversity as a source of phenotypic variation during introduction. Our results suggest that methylation differences may be common among house sparrows, but research is needed to discern whether methylation impacts phenotypic variation.