Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Life Sciences

Als Mutations Of Fus Suppress Protein Translation And Disrupt The Regulation Of Nonsense-Mediated Decay, Marisa Kamelgarn, Jing Chen, Lisha Kuang, Huan Jin, Edward J. Kasarskis, Haining Zhu Dec 2018

Als Mutations Of Fus Suppress Protein Translation And Disrupt The Regulation Of Nonsense-Mediated Decay, Marisa Kamelgarn, Jing Chen, Lisha Kuang, Huan Jin, Edward J. Kasarskis, Haining Zhu

Toxicology and Cancer Biology Faculty Publications

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by preferential motor neuron death. Approximately 15% of ALS cases are familial, and mutations in the fused in sarcoma (FUS) gene contribute to a subset of familial ALS cases. FUS is a multifunctional protein participating in many RNA metabolism pathways. ALS-linked mutations cause a liquid–liquid phase separation of FUS protein in vitro, inducing the formation of cytoplasmic granules and inclusions. However, it remains elusive what other proteins are sequestered into the inclusions and how such a process leads to neuronal dysfunction and degeneration. In this study, we developed …


H3k9 Methyltransferases And Demethylases Control Lung Tumor-Propagating Cells And Lung Cancer Progression, S. P. Rowbotham, F Li, A. F. M. Dost, S. M. Louie, B. P. Marsh, P. Pessina, C. R. Anbarasu, Christine Fillmore Brainson, S. J. Tuminello, A. Lieberman, S. Ryeom, T. M. Schlaeger, B. J. Aronow, H. Watanabe, K. K. Wong, C. F. Kim Nov 2018

H3k9 Methyltransferases And Demethylases Control Lung Tumor-Propagating Cells And Lung Cancer Progression, S. P. Rowbotham, F Li, A. F. M. Dost, S. M. Louie, B. P. Marsh, P. Pessina, C. R. Anbarasu, Christine Fillmore Brainson, S. J. Tuminello, A. Lieberman, S. Ryeom, T. M. Schlaeger, B. J. Aronow, H. Watanabe, K. K. Wong, C. F. Kim

Toxicology and Cancer Biology Faculty Publications

Epigenetic regulators are attractive anticancer targets, but the promise of therapeutic strategies inhibiting some of these factors has not been proven in vivo or taken into account tumor cell heterogeneity. Here we show that the histone methyltransferase G9a, reported to be a therapeutic target in many cancers, is a suppressor of aggressive lung tumor-propagating cells (TPCs). Inhibition of G9a drives lung adenocarcinoma cells towards the TPC phenotype by de-repressing genes which regulate the extracellular matrix. Depletion of G9a during tumorigenesis enriches tumors in TPCs and accelerates disease progression metastasis. Depleting histone demethylases represses G9a-regulated genes and TPC phenotypes. Demethylase inhibition …


Proteomics Of Human Liver Membrane Transporters: A Focus On Fetuses And Newborn Infants., Bianca D. Van Groen, Evita Van De Steeg, Miriam G. Mooij, Marola M H Van Lipzig, Barbara A E De Koning, Robert M. Verdijk, Heleen M. Wortelboer, R Gaedigk, Chengpeng Bi, J Steven Leeder, Ron H N Van Schaik, Joost Van Rosmalen, Dick Tibboel, Wouter H. Vaes, Saskia N. De Wildt Nov 2018

Proteomics Of Human Liver Membrane Transporters: A Focus On Fetuses And Newborn Infants., Bianca D. Van Groen, Evita Van De Steeg, Miriam G. Mooij, Marola M H Van Lipzig, Barbara A E De Koning, Robert M. Verdijk, Heleen M. Wortelboer, R Gaedigk, Chengpeng Bi, J Steven Leeder, Ron H N Van Schaik, Joost Van Rosmalen, Dick Tibboel, Wouter H. Vaes, Saskia N. De Wildt

Manuscripts, Articles, Book Chapters and Other Papers

BACKGROUND: Hepatic membrane transporters are involved in the transport of many endogenous and exogenous compounds, including drugs. We aimed to study the relation of age with absolute transporter protein expression in a cohort of 62 mainly fetus and newborn samples.

METHODS: Protein expressions of BCRP, BSEP, GLUT1, MCT1, MDR1, MRP1, MRP2, MRP3, NTCP, OCT1, OATP1B1, OATP1B3, OATP2B1 and ATP1A1 were quantified with LC-MS/MS in isolated crude membrane fractions of snap-frozen post-mortem fetal and pediatric, and surgical adult liver samples. mRNA expression was quantified using RNA sequencing, and genetic variants with TaqMan assays. We explored relationships between protein expression and age …


Glutathione De Novo Synthesis But Not Recycling Process Coordinates With Glutamine Catabolism To Control Redox Homeostasis And Directs Murine T Cell Differentiation, Gaojian Lian, J. N. Rashida Gnanaprakasam, Tingting Wang, Ruohan Wu, Xuyong Chen, Lingling Liu, Yuqing Shen, Mao Yang, Jun Yang, Ying Chen, Vasilis Vasiliou, Teresa A. Cassel, Douglas R. Green, Yusen Liu, Teresa W. -M. Fan, Ruoning Wang Sep 2018

Glutathione De Novo Synthesis But Not Recycling Process Coordinates With Glutamine Catabolism To Control Redox Homeostasis And Directs Murine T Cell Differentiation, Gaojian Lian, J. N. Rashida Gnanaprakasam, Tingting Wang, Ruohan Wu, Xuyong Chen, Lingling Liu, Yuqing Shen, Mao Yang, Jun Yang, Ying Chen, Vasilis Vasiliou, Teresa A. Cassel, Douglas R. Green, Yusen Liu, Teresa W. -M. Fan, Ruoning Wang

Toxicology and Cancer Biology Faculty Publications

Upon antigen stimulation, T lymphocytes undergo dramatic changes in metabolism to fulfill the bioenergetic, biosynthetic and redox demands of proliferation and differentiation. Glutathione (GSH) plays an essential role in controlling redox balance and cell fate. While GSH can be recycled from Glutathione disulfide (GSSG), the inhibition of this recycling pathway does not impact GSH content and murine T cell fate. By contrast, the inhibition of the de novo synthesis of GSH, by deleting either the catalytic (Gclc) or the modifier (Gclm) subunit of glutamate–cysteine ligase (Gcl), dampens intracellular GSH, increases ROS, and impact T cell differentiation. Moreover, the inhibition of …


The Zinc Transporter Zipt-7.1 Regulates Sperm Activation In Nematodes, Yanmei Zhao, Chieh-Hsiang Tan, Amber Krauchunas, Andrea Scharf, Nicholas Dietrich, Kurt Warnhoff, Zhiheng Yuan, Marina Druzhinina, Sam Guoping Gu, Long Miao, Andrew Singson, Ronald E Ellis, Kerry Kornfeld Jun 2018

The Zinc Transporter Zipt-7.1 Regulates Sperm Activation In Nematodes, Yanmei Zhao, Chieh-Hsiang Tan, Amber Krauchunas, Andrea Scharf, Nicholas Dietrich, Kurt Warnhoff, Zhiheng Yuan, Marina Druzhinina, Sam Guoping Gu, Long Miao, Andrew Singson, Ronald E Ellis, Kerry Kornfeld

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Sperm activation is a fascinating example of cell differentiation, in which immotile spermatids undergo a rapid and dramatic transition to become mature, motile sperm. Because the sperm nucleus is transcriptionally silent, this transition does not involve transcriptional changes. Although Caenorhabditis elegans is a leading model for studies of sperm activation, the mechanisms by which signaling pathways induce this transformation remain poorly characterized. Here we show that a conserved transmembrane zinc transporter, ZIPT-7.1, regulates the induction of sperm activation in Caenorhabditis nematodes. The zipt-7.1 mutant hermaphrodites cannot self-fertilize, and males reproduce poorly, because mutant spermatids are defective in responding to activating …


Protection Effect Of Exogenous Fibroblast Growth Factor 21 On The Kidney Injury In Vascular Calcification Rats, Yu-Chen Shi, Wei-Wei Lu, Yue-Long Hou, Kun Fu, Feng Gan, Shu-Juan Cheng, Shao-Ping Wang, Yong-Fen Qi, Jing-Hua Liu Mar 2018

Protection Effect Of Exogenous Fibroblast Growth Factor 21 On The Kidney Injury In Vascular Calcification Rats, Yu-Chen Shi, Wei-Wei Lu, Yue-Long Hou, Kun Fu, Feng Gan, Shu-Juan Cheng, Shao-Ping Wang, Yong-Fen Qi, Jing-Hua Liu

Pharmacology and Nutritional Sciences Faculty Publications

Background: Chronic kidney disease (CKD) is closely related to the cardiovascular events in vascular calcification (VC). However, little has known about the characteristics of kidney injury caused by VC. Fibroblast growth factor 21 (FGF21) is an endocrine factor, which takes part in various metabolic actions with the potential to alleviate metabolic disorder diseases. Even FGF21 has been regarded as a biomarker in CKD, the role of FGF21 in CKD remains unclear. Therefore, in this study, we evaluate the FGF21 on the kidney injury in VC rats.

Methods: The male Sprague-Dawley rats were divided into three groups: (1) control group, (2) …


Minocycline Protects Developing Brain Against Ethanol-Induced Damage, Xin Wang, Kai Zhang, Fanmuyi Yang, Zhenhua Ren, Mei Xu, Jacqueline A. Frank, Zun-Ji Ke, Jia Luo Feb 2018

Minocycline Protects Developing Brain Against Ethanol-Induced Damage, Xin Wang, Kai Zhang, Fanmuyi Yang, Zhenhua Ren, Mei Xu, Jacqueline A. Frank, Zun-Ji Ke, Jia Luo

Pharmacology and Nutritional Sciences Faculty Publications

Fetal alcohol spectrum disorders (FASD) are caused by ethanol exposure during the pregnancy and is the leading cause of mental retardation. Ethanol exposure during the development results in the loss of neurons in the developing brain, which may underlie many neurobehavioral deficits associated with FASD. It is important to understand the mechanisms underlying ethanol-induced neuronal loss and develop appropriate therapeutic strategies. One of the potential mechanisms involves neuroimmune activation. Using a third trimester equivalent mouse model of ethanol exposure, we demonstrated that ethanol induced a wide-spread neuroapoptosis, microglial activation, and neuroinflammation in C57BL/6 mice. Minocycline is an antibiotic that inhibits …