Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

A Customized Quantitative Pcr Microrna Panel Provides A Technically Robust Context For Studying Neurodegenerative Disease Biomarkers And Indicates A High Correlation Between Cerebrospinal Fluid And Choroid Plexus Microrna Expression, Wang-Xia Wang, David W. Fardo, Gregory A. Jicha, Peter T. Nelson Dec 2017

A Customized Quantitative Pcr Microrna Panel Provides A Technically Robust Context For Studying Neurodegenerative Disease Biomarkers And Indicates A High Correlation Between Cerebrospinal Fluid And Choroid Plexus Microrna Expression, Wang-Xia Wang, David W. Fardo, Gregory A. Jicha, Peter T. Nelson

Sanders-Brown Center on Aging Faculty Publications

MicroRNA (miRNA) expression varies in association with different tissue types and in diseases. Having been found in body fluids including blood and cerebrospinal fluid (CSF), miRNAs constitute potential biomarkers. CSF miRNAs have been proposed as biomarkers for neurodegenerative diseases; however, there is a lack of consensus about the best candidate miRNA biomarkers and there has been variability in results from different research centers, perhaps due to technical factors. Here, we sought to optimize technical parameters for CSF miRNA studies. We examined different RNA isolation methods and performed miRNA expression profiling with TaqMan® miRNA Arrays. More specifically, we developed a customized …


Nfatc2 Modulates Microglial Activation In The Aβpp/Ps1 Mouse Model Of Alzheimer's Disease, Gunjan D. Manocha, Atreyi Ghatak, Kendra L. Puig, Susan D. Kraner, Christopher M. Norris, Colin K. Combs Jun 2017

Nfatc2 Modulates Microglial Activation In The Aβpp/Ps1 Mouse Model Of Alzheimer's Disease, Gunjan D. Manocha, Atreyi Ghatak, Kendra L. Puig, Susan D. Kraner, Christopher M. Norris, Colin K. Combs

Pharmacology and Nutritional Sciences Faculty Publications

Alzheimer’s disease (AD) brains are characterized by fibrillar amyloid-β (Aβ) peptide containing plaques and associated reactive microglia. The proinflammatory phenotype of the microglia suggests that they may negatively affect disease course and contribute to behavioral decline. This hypothesis predicts that attenuating microglial activation may provide benefit against disease. Prior work from our laboratory and others has characterized a role for the transcription factor, nuclear factor of activated T cells (NFAT), in regulating microglial phenotype in response to different stimuli, including Aβ peptide. We observed that the NFATc2 isoform was the most highly expressed in murine microglia cultures, and inhibition or …


Translational Models For Vascular Cognitive Impairment: A Review Including Larger Species, Atticus H. Hainsworth, Stuart M. Allan, Johannes Boltze, Catriona Cunningham, Chad Farris, Elizabeth Head, Masafumi Ihara, Jeremy D. Isaacs, Raj N. Kalaria, Saskia A. M. J. Lesnik Oberstein, Mark B. Moss, Björn Nitzsche, Gary A. Rosenberg, Julie W. Rutten, Melita Salkovic-Petrisic, Aron M. Troen Jan 2017

Translational Models For Vascular Cognitive Impairment: A Review Including Larger Species, Atticus H. Hainsworth, Stuart M. Allan, Johannes Boltze, Catriona Cunningham, Chad Farris, Elizabeth Head, Masafumi Ihara, Jeremy D. Isaacs, Raj N. Kalaria, Saskia A. M. J. Lesnik Oberstein, Mark B. Moss, Björn Nitzsche, Gary A. Rosenberg, Julie W. Rutten, Melita Salkovic-Petrisic, Aron M. Troen

Pharmacology and Nutritional Sciences Faculty Publications

Background: Disease models are useful for prospective studies of pathology, identification of molecular and cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited.

Methods: We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, …