Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

High-Resolution Serum Proteomic Patterns For Ovarian Cancer Detection, Keith A. Baggerly, Sarah R. Edmonson, Jeffrey S. Morris, Kevin R. Coombes Nov 2004

High-Resolution Serum Proteomic Patterns For Ovarian Cancer Detection, Keith A. Baggerly, Sarah R. Edmonson, Jeffrey S. Morris, Kevin R. Coombes

Jeffrey S. Morris

No abstract provided.


The Neurobiology Of Antiepileptic Drugs For The Treatment Of Nonepileptic Conditions, Michael A. Rogawski, Wolfgang Löscher Jul 2004

The Neurobiology Of Antiepileptic Drugs For The Treatment Of Nonepileptic Conditions, Michael A. Rogawski, Wolfgang Löscher

Michael A. Rogawski

Antiepileptic drugs (AEDs) are commonly prescribed for nonepileptic conditions, including migraine headache, chronicneuropathic pain, mood disorders, schizophrenia and various neuromuscular syndromes. In many of these conditions, as in epilepsy, the drugs act by modifying the excitability of nerve (or muscle) through effects on voltage-gated sodium and calciumchannels or by promoting inhibition mediated by γ-aminobutyric acid (GABA) A receptors. In neuropathic pain, chronic nerveinjury is associated with the redistribution and altered subunit compositions of sodium and calcium channels that predisposeneurons in sensory pathways to fire spontaneously or at inappropriately high frequencies, often from ectopic sites. AEDs maycounteract this abnormal activity by …


A Hidden Markov Model Capable Of Predicting And Discriminating Β-Barrel Outer Membrane Proteins, Pantelis G. Bagos, Theodore D. Liakopoulos, Ioannis C. Spyropoulos, Stavros J. Hamodrakas Jan 2004

A Hidden Markov Model Capable Of Predicting And Discriminating Β-Barrel Outer Membrane Proteins, Pantelis G. Bagos, Theodore D. Liakopoulos, Ioannis C. Spyropoulos, Stavros J. Hamodrakas

Pantelis Bagos

BACKGROUND: Integral membrane proteins constitute about 20-30% of all proteins in the fully sequenced genomes. They come in two structural classes, the alpha-helical and the beta-barrel membrane proteins, demonstrating different physicochemical characteristics, structure and localization. While transmembrane segment prediction for the alpha-helical integral membrane proteins appears to be an easy task nowadays, the same is much more difficult for the beta-barrel membrane proteins. We developed a method, based on a Hidden Markov Model, capable of predicting the transmembrane beta-strands of the outer membrane proteins of gram-negative bacteria, and discriminating those from water-soluble proteins in large datasets. The model is trained …